Apache Hudi在阿里巴巴集团、EMIS Health,LinkNovate,Tathastu.AI,腾讯,Uber内使用,并且由Amazon AWS EMR和Google云平台支持,最近Amazon Athena支持了在Amazon S3上查询Apache Hudi数据集的能力,本博客将测试Athena查询S3上Hudi格式数据集。

1. 准备-Spark环境,S3 Bucket

需要使用Spark写入Hudi数据,登陆Amazon EMR并启动spark-shell:

$ export SCALA_VERSION=2.12
$ export SPARK_VERSION=2.4.4
$ spark-shell \
--packages org.apache.hudi:hudi-spark-bundle_${SCALA_VERSION}:0.5.3,org.apache.spark:spark-avro_${SCALA_VERSION}:${SPARK_VERSION}\
--conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer'
...
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 2.4.4
/_/ Using Scala version 2.12.10 (OpenJDK 64-Bit Server VM, Java 1.8.0_242)
Type in expressions to have them evaluated.
Type :help for more information.
scala>

接着使用如下scala代码设置表名,基础路径以及数据生成器来生成数据。这里设置basepaths3://hudi_athena_test/hudi_trips,以便后面进行查询

import org.apache.hudi.QuickstartUtils._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._
val tableName = "hudi_trips"
val basePath = "s3://hudi_athena_test/hudi_trips"
val dataGen = new DataGenerator

2. 插入数据

生成新的行程数据,导入DataFrame,并将其写入Hudi表

val inserts = convertToStringList(dataGen.generateInserts(10))
val df = spark.read.json(spark.sparkContext.parallelize(inserts, 2))
df.write.format("hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, tableName).
mode(Overwrite).
save(basePath)

3. 创建Athena数据库/表

Hudi内置表分区支持,所以在创建表后需要添加分区,安装athenareader工具,其提供Athena多个查询和其他有用的特性。

go get -u github.com/uber/athenadriver/athenareader

接着创建hudi_athena_test.sql文件,内容如下

DROP DATABASE IF EXISTS hudi_athena_test CASCADE;
create database hudi_athena_test;
CREATE EXTERNAL TABLE `trips`(
`begin_lat` double,
`begin_lon` double,
`driver` string,
`end_lat` double,
`end_lon` double,
`fare` double,
`rider` string,
`ts` double,
`uuid` string
) PARTITIONED BY (`partitionpath` string)
ROW FORMAT SERDE 'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS INPUTFORMAT 'org.apache.hudi.hadoop.HoodieParquetInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION 's3://hudi_athena_test/hudi_trips'
ALTER TABLE trips ADD
PARTITION (partitionpath = 'americas/united_states/san_francisco') LOCATION 's3://hudi_athena_test/hudi_trips/americas/united_states/san_francisco'
PARTITION (partitionpath = 'americas/brazil/sao_paulo') LOCATION 's3://hudi_athena_test/hudi_trips/americas/brazil/sao_paulo'
PARTITION (partitionpath = 'asia/india/chennai') LOCATION 's3://hudi_athena_test/hudi_trips/asia/india/chennai'

使用如下命令运行SQL语句

$ athenareader -q hudi_athena_test.sql

4. 使用Athena查询Hudi

如果没有错误,那么说明库和表在Athena中都已创建好,因此可以在Athena中查询Hudi数据集,使用athenareader查询结果如下

athenareader -q "select * from trips" -o markdown

也可以带条件进行查询

athenareader -q "select fare,rider from trips where fare>20" -o markdown

5. 更新Hudi表再次查询

Hudi支持S3中的数据,回到spark-shell并使用如下命令更新部分数据

val updates = convertToStringList(dataGen.generateUpdates(10))
val df = spark.read.json(spark.sparkContext.parallelize(updates, 2))
df.write.format("hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, tableName).
mode(Append).
save(basePath)

运行完成后,使用athenareader再次查询

athenareader -q "select * from trips" -o markdown

可以看到数据已经更新了

6. 限制

Athena不支持查询快照或增量查询,Hive/SparkSQL支持,为进行验证,通过spark-shell创建一个快照

spark.
read.
format("hudi").
load(basePath + "/*/*/*/*").
createOrReplaceTempView("hudi_trips_snapshot")

使用如下代码查询

val commits = spark.sql("select distinct(_hoodie_commit_time) as commitTime from hudi_trips_snapshot order by commitTime").map(k => k.getString(0)).take(50)
val beginTime = commits(commits.length - 2)

使用Athena查询将会失败,因为没有物化

$ athenareader -q "select distinct(_hoodie_commit_time) as commitTime from hudi_trips_snapshot order by commitTime"
SYNTAX_ERROR: line 1:57: Table awsdatacatalog.hudi_athena_test.hudi_trips_snapshot does not exist

根据官方文档,Athena支持查询Hudi数据集的Read-Optimized视图,同时,我们可以通过Athena来创建视图并进行查询,使用Athena在Hudi表上创建一个视图

$ athenareader -q "create view fare_greater_than_40 as select * from trips where fare>40" -a

查询视图

$ athenareader -q "select fare,rider from fare_greater_than_40"
FARE RIDER
43.4923811219014 rider-213
63.72504913279929 rider-284
90.25710109008239 rider-284
93.56018115236618 rider-213
49.527694252432056 rider-284
90.9053809533154 rider-284
98.3428192817987 rider-284

Apache Hudi + AWS S3 + Athena实战的更多相关文章

  1. 使用Apache Hudi + Amazon S3 + Amazon EMR + AWS DMS构建数据湖

    1. 引入 数据湖使组织能够在更短的时间内利用多个源的数据,而不同角色用户可以以不同的方式协作和分析数据,从而实现更好.更快的决策.Amazon Simple Storage Service(amaz ...

  2. 使用Amazon EMR和Apache Hudi在S3上插入,更新,删除数据

    将数据存储在Amazon S3中可带来很多好处,包括规模.可靠性.成本效率等方面.最重要的是,你可以利用Amazon EMR中的Apache Spark,Hive和Presto之类的开源工具来处理和分 ...

  3. 官宣!AWS Athena正式可查询Apache Hudi数据集

    1. 引入 Apache Hudi是一个开源的增量数据处理框架,提供了行级insert.update.upsert.delete的细粒度处理能力(Upsert表示如果数据集中存在记录就更新:否则插入) ...

  4. 基于 Apache Hudi + Presto + AWS S3 构建开放Lakehouse

    认识Lakehouse 数据仓库被认为是对结构化数据执行分析的标准,但它不能处理非结构化数据. 包括诸如文本.图像.音频.视频和其他格式的信息. 此外机器学习和人工智能在业务的各个方面变得越来越普遍, ...

  5. 实战 | 将Apache Hudi数据集写入阿里云OSS

    1. 引入 云上对象存储的廉价让不少公司将其作为主要的存储方案,而Hudi作为数据湖解决方案,支持对象存储也是必不可少.之前AWS EMR已经内置集成Hudi,也意味着可以在S3上无缝使用Hudi.当 ...

  6. Apache Hudi C位!云计算一哥AWS EMR 2020年度回顾

    1. 概述 成千上万的客户在Amazon EMR上使用Apache Spark,Apache Hive,Apache HBase,Apache Flink,Apache Hudi和Presto运行大规 ...

  7. 在AWS Glue中使用Apache Hudi

    1. Glue与Hudi简介 AWS Glue AWS Glue是Amazon Web Services(AWS)云平台推出的一款无服务器(Serverless)的大数据分析服务.对于不了解该产品的读 ...

  8. 真香!PySpark整合Apache Hudi实战

    1. 准备 Hudi支持Spark-2.x版本,你可以点击如下链接安装Spark,并使用pyspark启动 # pyspark export PYSPARK_PYTHON=$(which python ...

  9. 实战| 配置DataDog监控Apache Hudi应用指标

    1. 可用性 在Hudi最新master分支,由Hudi活跃贡献者Raymond Xu贡献了DataDog监控Hudi应用指标,该功能将在0.6.0 版本发布,也感谢Raymond的投稿. 2. 简介 ...

随机推荐

  1. redis(十八):Redis 配置

    #redis.conf# Redis configuration file example.# ./redis-server /path/to/redis.conf ################# ...

  2. 李航统计学习方法(第二版)(五):k 近邻算法简介

    1 简介 k近邻法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类.k近邻法假设给定一个训练数据集,其中的实例类别已定.分类时,对新的实例,根据其k个最近邻的训练实例的类别,通 ...

  3. 爬虫01 /jupyter、爬虫概述、requests基本使用

    爬虫02 /jupyter.爬虫概述.requests基本使用 目录 爬虫02 /jupyter.爬虫概述.requests基本使用 1. jupyter的基本使用 2. 爬虫概述 3. reques ...

  4. CSS实现宽度自适应100%,宽高16:9的比例的矩形

    现在我们来讲讲做自适应16:9的矩形要怎么做 第一步先计算高度,假设宽100%,那么高为h=9/16=56.25% 第二步利用之前所说设置padding-bottom方法实现矩形 代码 HTML &l ...

  5. 深入浅出ReentrantLock源码解析

    ReentrantLock不但是可重入锁,而且还是公平或非公平锁,在工作中会经常使用到,将自己对这两种锁的理解记录下来,希望对大家有帮助. 前提条件 在理解ReentrantLock时需要具备一些基本 ...

  6. 【一起学系列】之模板方法:写SSO我只要5分钟

    意图 定义一个操作中的算法的骨架,将一些步骤延迟到子类中. Template Method使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤 模板方法模式的诞生 模板方法模式为我们提供了一 ...

  7. [Qt插件]-02创建应用程序插件(插件化开发的一种思路)

    本篇是学习Qt Creator快速入门,插件开发的笔记   分为两部分 创建插件 使用插件的应用程序(测试插件)   插件是被使用的应用程序加载使用的. 是使用插件的应用程序定义接口,插件按照接口来实 ...

  8. Ethical Hacking - NETWORK PENETRATION TESTING(17)

    MITM - bypassing HTTPS Most websites use https in their login pages, this means that these pages are ...

  9. C++语法小记---string类

    string类 #include <iostream> #include <string> using namespace std; // 实现字符串右移, 例子hello & ...

  10. 印象笔记如何使用二次验证码/虚拟MFA/两步验证/谷歌验证器?

    一般点账户名——设置——安全设置中开通虚拟MFA两步验证 具体步骤见链接  印象笔记如何使用二次验证码/虚拟MFA/两步验证/谷歌验证器? 二次验证码小程序于谷歌身份验证器APP的优势 1.无需下载a ...