Apache Hudi + AWS S3 + Athena实战
Apache Hudi在阿里巴巴集团、EMIS Health,LinkNovate,Tathastu.AI,腾讯,Uber内使用,并且由Amazon AWS EMR和Google云平台支持,最近Amazon Athena支持了在Amazon S3上查询Apache Hudi数据集的能力,本博客将测试Athena查询S3上Hudi格式数据集。
1. 准备-Spark环境,S3 Bucket
需要使用Spark写入Hudi数据,登陆Amazon EMR并启动spark-shell:
$ export SCALA_VERSION=2.12
$ export SPARK_VERSION=2.4.4
$ spark-shell \
--packages org.apache.hudi:hudi-spark-bundle_${SCALA_VERSION}:0.5.3,org.apache.spark:spark-avro_${SCALA_VERSION}:${SPARK_VERSION}\
--conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer'
...
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 2.4.4
/_/
Using Scala version 2.12.10 (OpenJDK 64-Bit Server VM, Java 1.8.0_242)
Type in expressions to have them evaluated.
Type :help for more information.
scala>
接着使用如下scala代码设置表名,基础路径以及数据生成器来生成数据。这里设置basepath为s3://hudi_athena_test/hudi_trips,以便后面进行查询
import org.apache.hudi.QuickstartUtils._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._
val tableName = "hudi_trips"
val basePath = "s3://hudi_athena_test/hudi_trips"
val dataGen = new DataGenerator
2. 插入数据
生成新的行程数据,导入DataFrame,并将其写入Hudi表
val inserts = convertToStringList(dataGen.generateInserts(10))
val df = spark.read.json(spark.sparkContext.parallelize(inserts, 2))
df.write.format("hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, tableName).
mode(Overwrite).
save(basePath)
3. 创建Athena数据库/表
Hudi内置表分区支持,所以在创建表后需要添加分区,安装athenareader工具,其提供Athena多个查询和其他有用的特性。
go get -u github.com/uber/athenadriver/athenareader
接着创建hudi_athena_test.sql文件,内容如下
DROP DATABASE IF EXISTS hudi_athena_test CASCADE;
create database hudi_athena_test;
CREATE EXTERNAL TABLE `trips`(
`begin_lat` double,
`begin_lon` double,
`driver` string,
`end_lat` double,
`end_lon` double,
`fare` double,
`rider` string,
`ts` double,
`uuid` string
) PARTITIONED BY (`partitionpath` string)
ROW FORMAT SERDE 'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS INPUTFORMAT 'org.apache.hudi.hadoop.HoodieParquetInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION 's3://hudi_athena_test/hudi_trips'
ALTER TABLE trips ADD
PARTITION (partitionpath = 'americas/united_states/san_francisco') LOCATION 's3://hudi_athena_test/hudi_trips/americas/united_states/san_francisco'
PARTITION (partitionpath = 'americas/brazil/sao_paulo') LOCATION 's3://hudi_athena_test/hudi_trips/americas/brazil/sao_paulo'
PARTITION (partitionpath = 'asia/india/chennai') LOCATION 's3://hudi_athena_test/hudi_trips/asia/india/chennai'
使用如下命令运行SQL语句
$ athenareader -q hudi_athena_test.sql
4. 使用Athena查询Hudi
如果没有错误,那么说明库和表在Athena中都已创建好,因此可以在Athena中查询Hudi数据集,使用athenareader查询结果如下
athenareader -q "select * from trips" -o markdown

也可以带条件进行查询
athenareader -q "select fare,rider from trips where fare>20" -o markdown

5. 更新Hudi表再次查询
Hudi支持S3中的数据,回到spark-shell并使用如下命令更新部分数据
val updates = convertToStringList(dataGen.generateUpdates(10))
val df = spark.read.json(spark.sparkContext.parallelize(updates, 2))
df.write.format("hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, tableName).
mode(Append).
save(basePath)
运行完成后,使用athenareader再次查询
athenareader -q "select * from trips" -o markdown
可以看到数据已经更新了

6. 限制
Athena不支持查询快照或增量查询,Hive/SparkSQL支持,为进行验证,通过spark-shell创建一个快照
spark.
read.
format("hudi").
load(basePath + "/*/*/*/*").
createOrReplaceTempView("hudi_trips_snapshot")
使用如下代码查询
val commits = spark.sql("select distinct(_hoodie_commit_time) as commitTime from hudi_trips_snapshot order by commitTime").map(k => k.getString(0)).take(50)
val beginTime = commits(commits.length - 2)
使用Athena查询将会失败,因为没有物化
$ athenareader -q "select distinct(_hoodie_commit_time) as commitTime from hudi_trips_snapshot order by commitTime"
SYNTAX_ERROR: line 1:57: Table awsdatacatalog.hudi_athena_test.hudi_trips_snapshot does not exist
根据官方文档,Athena支持查询Hudi数据集的Read-Optimized视图,同时,我们可以通过Athena来创建视图并进行查询,使用Athena在Hudi表上创建一个视图
$ athenareader -q "create view fare_greater_than_40 as select * from trips where fare>40" -a
查询视图
$ athenareader -q "select fare,rider from fare_greater_than_40"
FARE RIDER
43.4923811219014 rider-213
63.72504913279929 rider-284
90.25710109008239 rider-284
93.56018115236618 rider-213
49.527694252432056 rider-284
90.9053809533154 rider-284
98.3428192817987 rider-284
Apache Hudi + AWS S3 + Athena实战的更多相关文章
- 使用Apache Hudi + Amazon S3 + Amazon EMR + AWS DMS构建数据湖
1. 引入 数据湖使组织能够在更短的时间内利用多个源的数据,而不同角色用户可以以不同的方式协作和分析数据,从而实现更好.更快的决策.Amazon Simple Storage Service(amaz ...
- 使用Amazon EMR和Apache Hudi在S3上插入,更新,删除数据
将数据存储在Amazon S3中可带来很多好处,包括规模.可靠性.成本效率等方面.最重要的是,你可以利用Amazon EMR中的Apache Spark,Hive和Presto之类的开源工具来处理和分 ...
- 官宣!AWS Athena正式可查询Apache Hudi数据集
1. 引入 Apache Hudi是一个开源的增量数据处理框架,提供了行级insert.update.upsert.delete的细粒度处理能力(Upsert表示如果数据集中存在记录就更新:否则插入) ...
- 基于 Apache Hudi + Presto + AWS S3 构建开放Lakehouse
认识Lakehouse 数据仓库被认为是对结构化数据执行分析的标准,但它不能处理非结构化数据. 包括诸如文本.图像.音频.视频和其他格式的信息. 此外机器学习和人工智能在业务的各个方面变得越来越普遍, ...
- 实战 | 将Apache Hudi数据集写入阿里云OSS
1. 引入 云上对象存储的廉价让不少公司将其作为主要的存储方案,而Hudi作为数据湖解决方案,支持对象存储也是必不可少.之前AWS EMR已经内置集成Hudi,也意味着可以在S3上无缝使用Hudi.当 ...
- Apache Hudi C位!云计算一哥AWS EMR 2020年度回顾
1. 概述 成千上万的客户在Amazon EMR上使用Apache Spark,Apache Hive,Apache HBase,Apache Flink,Apache Hudi和Presto运行大规 ...
- 在AWS Glue中使用Apache Hudi
1. Glue与Hudi简介 AWS Glue AWS Glue是Amazon Web Services(AWS)云平台推出的一款无服务器(Serverless)的大数据分析服务.对于不了解该产品的读 ...
- 真香!PySpark整合Apache Hudi实战
1. 准备 Hudi支持Spark-2.x版本,你可以点击如下链接安装Spark,并使用pyspark启动 # pyspark export PYSPARK_PYTHON=$(which python ...
- 实战| 配置DataDog监控Apache Hudi应用指标
1. 可用性 在Hudi最新master分支,由Hudi活跃贡献者Raymond Xu贡献了DataDog监控Hudi应用指标,该功能将在0.6.0 版本发布,也感谢Raymond的投稿. 2. 简介 ...
随机推荐
- 如果你想写自己的Benchmark框架
目录 简介 八条军规 第一条军规 第二条军规 第三条军规 第四条军规 第五条军规 第六条军规 第七条军规 最后一条军规 总结 简介 使用过JMH的同学一定会惊叹它的神奇.JMH作为一个优秀的Bench ...
- (三)学习了解OrchardCore笔记——灵魂中间件ModularTenantContainerMiddleware的第一行①的模块部分
了解到了OrchardCore主要由两个中间件(ModularTenantContainerMiddleware和ModularTenantRouterMiddleware)构成,下面开始了解Modu ...
- javascript基础(三): 操作DOM对象(重点)
DOM:文档对象模型 核心 浏览器网页就是一个Dom树形结构! 更新:更新Dom节点 遍历Dom节点:得到Dom节点 删除:删除一个Dom节点 添加:添加一个新的节点 要操作一个Dom节点,就必须要先 ...
- 04 drf源码剖析之版本
04 drf源码剖析之版本 目录 04 drf源码剖析之版本 1. 版本简述 2. 版本使用 3.源码剖析 4. 总结 1. 版本简述 API版本控制使您可以更改不同客户端之间的行为.REST框架提供 ...
- 数据可视化之DAX篇(十一)Power BI度量值不能作为坐标轴?这个解决思路送给你
https://zhuanlan.zhihu.com/p/79522456 对于PowerBI使用者而言,经常碰到的一个问题是,想把度量值放到坐标轴上,却发现无法实现.尤其是初学者,更是习惯性的想这么 ...
- Django之 admin组件
本节内容 路由系统 models模型 admin views视图 template模板 Django Admin介绍 admin 是django 自带的用来让你进行数据库管理的web app. 提供 ...
- 前端01 /HTML简单简绍
前端01 /HTML简单简绍 目录 前端01 /HTML简单简绍 1.web服务本质 2.浏览器的工作流程 3.HTML是什么 4.web服务本质 5.HTML文档结构 6.HTML注释 6.标签语法 ...
- Ethical Hacking - Web Penetration Testing(9)
SQL INJECTION Discovering SQLi in GET Inject by browser URL. Selecting Data From Database Change the ...
- GEDIT外部工具
首先通过编辑-首选项-插件-外部命令来打开外部命令,然后在工具-Manage External Tools来添加新工具,工具代码使用bash语言. 代码使用方式:+添加新插件,在编辑框中粘贴代码,快捷 ...
- STL源码剖析:配接器
启 配接器就是适配器 STL中的适配器一共三种: 迭代器适配器 是一种观念上的改变,如将赋值操作变成插入,前进变成后退,等 函数适配器 STL中最广泛的配接器群体 可以实现连续配接 配接操作:bind ...