Apache Kafka - Schema Registry
关于我们为什么需要Schema Registry?
参考,
https://www.confluent.io/blog/how-i-learned-to-stop-worrying-and-love-the-schema-part-1/
https://www.confluent.io/blog/stream-data-platform-2/
Use Avro as Your Data Format
We think Avro is the best choice for a number of reasons:
- It has a direct mapping to and from JSON
- It has a very compact format. The bulk of JSON, repeating every field name with every single record, is what makes JSON inefficient for high-volume usage.
- It is very fast.
- It has great bindings for a wide variety of programming languages so you can generate Java objects that make working with event data easier, but it does not require code generation so tools can be written generically for any data stream.
- It has a rich, extensible schema language defined in pure JSON
- It has the best notion of compatibility for evolving your data over time.
One of the critical features of Avro is the ability to define a schema for your data. For example an event that represents the sale of a product might look like this:
{
"time": 1424849130111,
"customer_id": 1234,
"product_id": 5678,
"quantity":3,
"payment_type": "mastercard"
}
It might have a schema like this that defines these five fields:
{
"type": "record",
"doc":"This event records the sale of a product",
"name": "ProductSaleEvent",
"fields" : [
{"name":"time", "type":"long", "doc":"The time of the purchase"},
{"name":"customer_id", "type":"long", "doc":"The customer"},
{"name":"product_id", "type":"long", "doc":"The product"},
{"name":"quantity", "type":"int"},
{"name":"payment",
"type":{"type":"enum",
"name":"payment_types",
"symbols":["cash","mastercard","visa"]},
"doc":"The method of payment"}
]
}
Here is how these schemas will be put to use. You will associate a schema like this with each Kafka topic. You can think of the schema much like the schema of a relational database table, giving the requirements for data that is produced into the topic as well as giving instructions on how to interpret data read from the topic.
The schemas end up serving a number of critical purposes:
- They let the producers or consumers of data streams know the right fields are need in an event and what type each field is.
- They document the usage of the event and the meaning of each field in the “doc” fields.
- They protect downstream data consumers from malformed data, as only valid data will be permitted in the topic.
The Need For Schemas
Robustness
One of the primary advantages of this type of architecture where data is modeled as streams is that applications are decoupled.
Clarity and Semantics
Worse, the actual meaning of the data becomes obscure and often misunderstood by different applications because there is no real canonical documentation for the meaning of the fields. One person interprets a field one way and populates it accordingly and another interprets it differently.
Compatibility
Schemas also help solve one of the hardest problems in organization-wide data flow: modeling and handling change in data format. Schema definitions just capture a point in time, but your data needs to evolve with your business and with your code.
Schemas give a mechanism for reasoning about which format changes will be compatible and (hence won’t require reprocessing) and which won’t.
Schemas are a Conversation
However data streams are different; they are a broadcast channel. Unlike an application’s database, the writer of the data is, almost by definition, not the reader. And worse, there are many readers, often in different parts of the organization. These two groups of people, the writers and the readers, need a concrete way to describe the data that will be exchanged between them and schemas provide exactly this.
Schemas Eliminate The Manual Labor of Data Science
It is almost a truism that data science, which I am using as a short-hand here for “putting data to effective use”, is 80% parsing, validation, and low-level data munging.
KIP-69 - Kafka Schema Registry
pending状态,这个KIP估计会被cancel掉
因为confluent.inc已经提供相应的方案,
https://github.com/confluentinc/schema-registry
http://docs.confluent.io/3.0.1/schema-registry/docs/index.html
比较牛逼的是,有人为这个开发了UI,
https://www.landoop.com/blog/2016/08/schema-registry-ui/
本身使用,都是通过http进行Schema的读写,比较简单
设计,
参考, http://docs.confluent.io/3.0.1/schema-registry/docs/design.html

主备架构,通过zk来选主
每个schema需要一个唯一id,这个id也通过zk来保证递增
schema存在kafka的一个特殊的topic中,_schemas,一个单partition的topic
我的理解,在注册和查询schema的时候,是通过local caches进行检索的,kafka的topic可以用于replay来重建caches
Apache Kafka - Schema Registry的更多相关文章
- Kafka Schema Registry | 学习Avro Schema
1.目标 在这个Kafka Schema Registry教程中,我们将了解Schema Registry是什么以及为什么我们应该将它与Apache Kafka一起使用.此外,我们将看到Avro架构演 ...
- Kafka topic Schema version mismatch error - org.apache.kafka.common.protocol.types.SchemaException
Problem description: There is error messge when run spark app using spark streaming Kafka version 0. ...
- Spark(四十五):Schema Registry
很多时候在流数据处理时,我们会将avro格式的数据写入到kafka的topic,但是avro写入到kafka的时候,数据有可能会与版本升级,也就是schema发生变化,此时如果消费端,不知道哪些数据的 ...
- 实践部署与使用apache kafka框架技术博文资料汇总
前一篇Kafka框架设计来自英文原文(Kafka Architecture Design)的翻译及整理文章,非常有借鉴性,本文是从一个企业使用Kafka框架的角度来记录及整理的Kafka框架的技术资料 ...
- How-to: Do Real-Time Log Analytics with Apache Kafka, Cloudera Search, and Hue
Cloudera recently announced formal support for Apache Kafka. This simple use case illustrates how to ...
- Flafka: Apache Flume Meets Apache Kafka for Event Processing
The new integration between Flume and Kafka offers sub-second-latency event processing without the n ...
- apache kafka系列之客户端开发-java
1.依赖包 <dependency> <groupId>org.apache.kafka</groupId> <a ...
- Apache Kafka - How to Load Test with JMeter
In this article, we are going to look at how to load test Apache Kafka, a distributed streaming plat ...
- Apache Kafka是数据库吗?
最近思路有些枯竭,找些务虚的话题来凑.本文内容完全来自于Martin Kelppmann在2019年Kafka伦敦峰会上的演讲.顺便提一句,Kelppmann是<Designing Data-I ...
随机推荐
- 瀑布流布局——jquery
首先确定定位,因为.box的宽度是确定的,根据屏幕的宽度来调整.box的列数,所以#content的宽度是随着.box的列数变化而变化的,并且需要保持相对于body居中. 因此需要给#content添 ...
- espcms会员二次开发文件说明——会员,时间格式
[espcms会员图片字段] 添加字段加入图片类型/webadm/include/inc_formtypelist.php 会员修改页面模型/webadm/templates/member/membe ...
- java2
1:关键字(掌握) (1)被Java语言赋予特定含义的单词 (2)特点: 全部小写. (3)注意事项: A:goto和const作为保留字存在. B:类似于Notepad++这样的高级记事本会对关键字 ...
- jquery ajax 请求参数详细说明 及 实例
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址. type: 要求为String类型的参数,请求方式(post或get)默认为get.注意其他http请求方法,例如put和 ...
- 将speedbutton放在toolbar上,flat设为true,并将speedbutton的width和height设得比较大,在speedbutton中间会出现一条竖线,如何消去?
把toolbar的flat设为false就没有竖线了
- Android笔记:多线程
定义线程的两个方法: 1. class MyThread extends Thread { public void run() {// 处理具体的逻辑 } } new MyThread().start ...
- ios最新的视频地址链接
2016年最新iOS教程UI基础http://pan.baidu.com/s/1pLvnH8n资料链接:http://pan.baidu.com/s/1nvewKkh 密码:wktp 2016年最新i ...
- 模拟搭建Web项目的真实运行环境(一)
序言 最近尝试完整搭建一个Web项目的运行环境,总结一下这几个月学到的知识点. 后面的文章主要包括一下几个内容: A. 搭建一个Linux服务器,用来部署Redis.Mongo等数据存储环境: B. ...
- ImageView的scaleType详解
ImageView的ScaleType详 1. 网上的误解 不得不说很失望,到网上搜索了几篇帖子,然后看到的都是相互复制粘贴,就算不是粘贴的,有几篇还是只是拿着自己的几个简单例子,然后做测试,这种以一 ...
- MyEclipse Project Migration功能中文简单介绍
前端时间,我对myEclispe的project Migration产生了疑问,也不知道是干啥用的.然后百度之,翻译结果是项目迁移,再次百度其他人对这个的经验,没想到百度到的没多少,甚至都没有说明这个 ...