关于我们为什么需要Schema Registry?

参考,

https://www.confluent.io/blog/how-i-learned-to-stop-worrying-and-love-the-schema-part-1/

https://www.confluent.io/blog/schema-registry-kafka-stream-processing-yes-virginia-you-really-need-one/

https://www.confluent.io/blog/stream-data-platform-2/

Use Avro as Your Data Format

We think Avro is the best choice for a number of reasons:

  1. It has a direct mapping to and from JSON
  2. It has a very compact format. The bulk of JSON, repeating every field name with every single record, is what makes JSON inefficient for high-volume usage.
  3. It is very fast.
  4. It has great bindings for a wide variety of programming languages so you can generate Java objects that make working with event data easier, but it does not require code generation so tools can be written generically for any data stream.
  5. It has a rich, extensible schema language defined in pure JSON
  6. It has the best notion of compatibility for evolving your data over time.

 

One of the critical features of Avro is the ability to define a schema for your data. For example an event that represents the sale of a product might look like this:

{
"time": 1424849130111,
"customer_id": 1234,
"product_id": 5678,
"quantity":3,
"payment_type": "mastercard"
}

It might have a schema like this that defines these five fields:

{
"type": "record",
"doc":"This event records the sale of a product",
"name": "ProductSaleEvent",
"fields" : [
{"name":"time", "type":"long", "doc":"The time of the purchase"},
{"name":"customer_id", "type":"long", "doc":"The customer"},
{"name":"product_id", "type":"long", "doc":"The product"},
{"name":"quantity", "type":"int"},
{"name":"payment",
"type":{"type":"enum",
"name":"payment_types",
"symbols":["cash","mastercard","visa"]},
"doc":"The method of payment"}
]
}

 

Here is how these schemas will be put to use. You will associate a schema like this with each Kafka topic. You can think of the schema much like the schema of a relational database table, giving the requirements for data that is produced into the topic as well as giving instructions on how to interpret data read from the topic.

The schemas end up serving a number of critical purposes:

  1. They let the producers or consumers of data streams know the right fields are need in an event and what type each field is.
  2. They document the usage of the event and the meaning of each field in the “doc” fields.
  3. They protect downstream data consumers from malformed data, as only valid data will be permitted in the topic.

 

The Need For Schemas

Robustness

One of the primary advantages of this type of architecture where data is modeled as streams is that applications are decoupled.

Clarity and Semantics

Worse, the actual meaning of the data becomes obscure and often misunderstood by different applications because there is no real canonical documentation for the meaning of the fields. One person interprets a field one way and populates it accordingly and another interprets it differently.

Compatibility

Schemas also help solve one of the hardest problems in organization-wide data flow: modeling and handling change in data format. Schema definitions just capture a point in time, but your data needs to evolve with your business and with your code.

Schemas give a mechanism for reasoning about which format changes will be compatible and (hence won’t require reprocessing) and which won’t.

Schemas are a Conversation

However data streams are different; they are a broadcast channel. Unlike an application’s database, the writer of the data is, almost by definition, not the reader. And worse, there are many readers, often in different parts of the organization. These two groups of people, the writers and the readers, need a concrete way to describe the data that will be exchanged between them and schemas provide exactly this.

Schemas Eliminate The Manual Labor of Data Science

It is almost a truism that data science, which I am using as a short-hand here for “putting data to effective use”, is 80% parsing, validation, and low-level data munging.

 

KIP-69 - Kafka Schema Registry

pending状态,这个KIP估计会被cancel掉

因为confluent.inc已经提供相应的方案,

https://github.com/confluentinc/schema-registry

http://docs.confluent.io/3.0.1/schema-registry/docs/index.html

比较牛逼的是,有人为这个开发了UI,

https://www.landoop.com/blog/2016/08/schema-registry-ui/

本身使用,都是通过http进行Schema的读写,比较简单

 

设计,

参考, http://docs.confluent.io/3.0.1/schema-registry/docs/design.html

主备架构,通过zk来选主

每个schema需要一个唯一id,这个id也通过zk来保证递增

schema存在kafka的一个特殊的topic中,_schemas,一个单partition的topic

我的理解,在注册和查询schema的时候,是通过local caches进行检索的,kafka的topic可以用于replay来重建caches

Apache Kafka - Schema Registry的更多相关文章

  1. Kafka Schema Registry | 学习Avro Schema

    1.目标 在这个Kafka Schema Registry教程中,我们将了解Schema Registry是什么以及为什么我们应该将它与Apache Kafka一起使用.此外,我们将看到Avro架构演 ...

  2. Kafka topic Schema version mismatch error - org.apache.kafka.common.protocol.types.SchemaException

    Problem description: There is error messge when run spark app using spark streaming Kafka version 0. ...

  3. Spark(四十五):Schema Registry

    很多时候在流数据处理时,我们会将avro格式的数据写入到kafka的topic,但是avro写入到kafka的时候,数据有可能会与版本升级,也就是schema发生变化,此时如果消费端,不知道哪些数据的 ...

  4. 实践部署与使用apache kafka框架技术博文资料汇总

    前一篇Kafka框架设计来自英文原文(Kafka Architecture Design)的翻译及整理文章,非常有借鉴性,本文是从一个企业使用Kafka框架的角度来记录及整理的Kafka框架的技术资料 ...

  5. How-to: Do Real-Time Log Analytics with Apache Kafka, Cloudera Search, and Hue

    Cloudera recently announced formal support for Apache Kafka. This simple use case illustrates how to ...

  6. Flafka: Apache Flume Meets Apache Kafka for Event Processing

    The new integration between Flume and Kafka offers sub-second-latency event processing without the n ...

  7. apache kafka系列之客户端开发-java

    1.依赖包 <dependency>            <groupId>org.apache.kafka</groupId>            <a ...

  8. Apache Kafka - How to Load Test with JMeter

    In this article, we are going to look at how to load test Apache Kafka, a distributed streaming plat ...

  9. Apache Kafka是数据库吗?

    最近思路有些枯竭,找些务虚的话题来凑.本文内容完全来自于Martin Kelppmann在2019年Kafka伦敦峰会上的演讲.顺便提一句,Kelppmann是<Designing Data-I ...

随机推荐

  1. Apache curator-client详解

    Apache curator框架中curator-client组件可以作为zookeeper client来使用,它提供了zk实例创建/重连机制等,简单便捷.不过直接使用curator-client并 ...

  2. preparestatement可以避免注入

    之所以PreparedStatement能防止注入,是因为它把单引号转义了,变成了\',这样一来,就无法截断SQL语句,进而无法拼接SQL语句,基本上没有办法注入了. 不使用这个,我们一般做查询或更新 ...

  3. SQL Server服务器上需要导入Excel数据的必要条件

    SQL Server服务器上需要导入Excel数据,必须安装2007 Office system 驱动程序:数据连接组件,或者Access2010的数据库引擎可再发行程序包,这样就不必在服务器上装Ex ...

  4. 仿Redis用来作前端浏览器的数据存储结构

    用js写了一个类似redis存储结构的类库,目前只有的存储类型只有hash.set两个, 还没测试过性能,欢迎各位猿友能够帮我指出程序代码的缺陷, 后期有时间会完善其他几个类型的存储结构. /**** ...

  5. Redis初探

    Redis如今已经成为Web开发社区中最火热的内存数据库之一,而他的诞生距离现在不过才6年的时间,随着Web2.0的蓬勃发展,网站数据快速增长,对高性能读写的需求也越来越多,再加上半结构化的数据比重逐 ...

  6. 《利用Python进行数据分析: Python for Data Analysis 》学习随笔

    NoteBook of <Data Analysis with Python> 3.IPython基础 Tab自动补齐 变量名 变量方法 路径 解释 ?解释, ??显示函数源码 ?搜索命名 ...

  7. Ubuntu下Sublime Text 3解决无法输入中文的方法

    Ubuntu下Sublime Text 3解决无法输入中文的方法_百度经验http://jingyan.baidu.com/article/f3ad7d0ff8731609c3345b3b.html ...

  8. c#关于类的继承

    public class D { public virtual void Run(string name) { Console.WriteLine(name + ",good"); ...

  9. 吃透Javascript数组操作的正确姿势—再读《Js高程》

    Javascript中关于数组对象的操作方法比较多也比较杂,正好再次捡起<Javascript高级程序设计>来读,把它们一一总结梳理了一下: 方法类别 方法名称 方法描述 参数 返回值 备 ...

  10. Js中最常见的异常捕捉 TryCatch

    今天检查网页的时候因为一段Js报错 导致下面的js没有执行(一个js动态添加的弹窗没有出现) 原因是因为 一个属性本身是undefined 找不到 无法给他赋值 这里的原因很简单 也已经修改好了但是这 ...