Apache Kafka - Schema Registry
关于我们为什么需要Schema Registry?
参考,
https://www.confluent.io/blog/how-i-learned-to-stop-worrying-and-love-the-schema-part-1/
https://www.confluent.io/blog/stream-data-platform-2/
Use Avro as Your Data Format
We think Avro is the best choice for a number of reasons:
- It has a direct mapping to and from JSON
- It has a very compact format. The bulk of JSON, repeating every field name with every single record, is what makes JSON inefficient for high-volume usage.
- It is very fast.
- It has great bindings for a wide variety of programming languages so you can generate Java objects that make working with event data easier, but it does not require code generation so tools can be written generically for any data stream.
- It has a rich, extensible schema language defined in pure JSON
- It has the best notion of compatibility for evolving your data over time.
One of the critical features of Avro is the ability to define a schema for your data. For example an event that represents the sale of a product might look like this:
{
"time": 1424849130111,
"customer_id": 1234,
"product_id": 5678,
"quantity":3,
"payment_type": "mastercard"
}
It might have a schema like this that defines these five fields:
{
"type": "record",
"doc":"This event records the sale of a product",
"name": "ProductSaleEvent",
"fields" : [
{"name":"time", "type":"long", "doc":"The time of the purchase"},
{"name":"customer_id", "type":"long", "doc":"The customer"},
{"name":"product_id", "type":"long", "doc":"The product"},
{"name":"quantity", "type":"int"},
{"name":"payment",
"type":{"type":"enum",
"name":"payment_types",
"symbols":["cash","mastercard","visa"]},
"doc":"The method of payment"}
]
}
Here is how these schemas will be put to use. You will associate a schema like this with each Kafka topic. You can think of the schema much like the schema of a relational database table, giving the requirements for data that is produced into the topic as well as giving instructions on how to interpret data read from the topic.
The schemas end up serving a number of critical purposes:
- They let the producers or consumers of data streams know the right fields are need in an event and what type each field is.
- They document the usage of the event and the meaning of each field in the “doc” fields.
- They protect downstream data consumers from malformed data, as only valid data will be permitted in the topic.
The Need For Schemas
Robustness
One of the primary advantages of this type of architecture where data is modeled as streams is that applications are decoupled.
Clarity and Semantics
Worse, the actual meaning of the data becomes obscure and often misunderstood by different applications because there is no real canonical documentation for the meaning of the fields. One person interprets a field one way and populates it accordingly and another interprets it differently.
Compatibility
Schemas also help solve one of the hardest problems in organization-wide data flow: modeling and handling change in data format. Schema definitions just capture a point in time, but your data needs to evolve with your business and with your code.
Schemas give a mechanism for reasoning about which format changes will be compatible and (hence won’t require reprocessing) and which won’t.
Schemas are a Conversation
However data streams are different; they are a broadcast channel. Unlike an application’s database, the writer of the data is, almost by definition, not the reader. And worse, there are many readers, often in different parts of the organization. These two groups of people, the writers and the readers, need a concrete way to describe the data that will be exchanged between them and schemas provide exactly this.
Schemas Eliminate The Manual Labor of Data Science
It is almost a truism that data science, which I am using as a short-hand here for “putting data to effective use”, is 80% parsing, validation, and low-level data munging.
KIP-69 - Kafka Schema Registry
pending状态,这个KIP估计会被cancel掉
因为confluent.inc已经提供相应的方案,
https://github.com/confluentinc/schema-registry
http://docs.confluent.io/3.0.1/schema-registry/docs/index.html
比较牛逼的是,有人为这个开发了UI,
https://www.landoop.com/blog/2016/08/schema-registry-ui/
本身使用,都是通过http进行Schema的读写,比较简单
设计,
参考, http://docs.confluent.io/3.0.1/schema-registry/docs/design.html

主备架构,通过zk来选主
每个schema需要一个唯一id,这个id也通过zk来保证递增
schema存在kafka的一个特殊的topic中,_schemas,一个单partition的topic
我的理解,在注册和查询schema的时候,是通过local caches进行检索的,kafka的topic可以用于replay来重建caches
Apache Kafka - Schema Registry的更多相关文章
- Kafka Schema Registry | 学习Avro Schema
1.目标 在这个Kafka Schema Registry教程中,我们将了解Schema Registry是什么以及为什么我们应该将它与Apache Kafka一起使用.此外,我们将看到Avro架构演 ...
- Kafka topic Schema version mismatch error - org.apache.kafka.common.protocol.types.SchemaException
Problem description: There is error messge when run spark app using spark streaming Kafka version 0. ...
- Spark(四十五):Schema Registry
很多时候在流数据处理时,我们会将avro格式的数据写入到kafka的topic,但是avro写入到kafka的时候,数据有可能会与版本升级,也就是schema发生变化,此时如果消费端,不知道哪些数据的 ...
- 实践部署与使用apache kafka框架技术博文资料汇总
前一篇Kafka框架设计来自英文原文(Kafka Architecture Design)的翻译及整理文章,非常有借鉴性,本文是从一个企业使用Kafka框架的角度来记录及整理的Kafka框架的技术资料 ...
- How-to: Do Real-Time Log Analytics with Apache Kafka, Cloudera Search, and Hue
Cloudera recently announced formal support for Apache Kafka. This simple use case illustrates how to ...
- Flafka: Apache Flume Meets Apache Kafka for Event Processing
The new integration between Flume and Kafka offers sub-second-latency event processing without the n ...
- apache kafka系列之客户端开发-java
1.依赖包 <dependency> <groupId>org.apache.kafka</groupId> <a ...
- Apache Kafka - How to Load Test with JMeter
In this article, we are going to look at how to load test Apache Kafka, a distributed streaming plat ...
- Apache Kafka是数据库吗?
最近思路有些枯竭,找些务虚的话题来凑.本文内容完全来自于Martin Kelppmann在2019年Kafka伦敦峰会上的演讲.顺便提一句,Kelppmann是<Designing Data-I ...
随机推荐
- gdbsever 使用说明
gdbsever 使用说明 在新塘N3292x平台下 编译 gdbsever ./configure --target=arm-linux --host=arm-linux arm-linux-gdb ...
- JVM内存管理------垃圾搜集器简介
引言 上一章我们已经探讨过GC的各个算法,那么垃圾搜集器是什么呢? 通俗的讲,使用编程语言将算法实现出来,产生的程序就是垃圾搜集器了.既然谈到了编程语言的实现,那么在讨论垃圾搜集器的时候,就已经涉及到 ...
- 一款全兼容的播放器 videojs
[官网]http://www.videojs.com/ videojs就提供了这样一套解决方案,他是一个兼容HTML5的视频播放工具,早期版本兼容所有浏览器,方法是:提供三个后缀名的视频,并在不支持h ...
- js 获取元素宽高
可以用源生js的.offsetHeight .offsetWidth属性 document.getElementById("temp_form").offsetHeight // ...
- sql 删除表中某字段的重复数据
重复字段:BarCode SELECT * FROM dbo.AssetBarCode WHERE BarCode IN (SELECT BarCode FROM dbo.AssetBarCode G ...
- linq 的switch实现
List<RemindSend> lrs = (from a in db.Remind join b in db.Certified on a.certifiedId equals b.C ...
- js小游戏---智力游戏
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <HTML> <HEAD ...
- Redis的缓存策略和主键失效机制
作为缓存系统都要定期清理无效数据,就需要一个主键失效和淘汰策略. >>EXPIRE主键失效机制 在Redis当中,有生存期的key被称为volatile,在创建缓存时,要为给定的key设置 ...
- AngularJs ng-route路由详解
本篇基于ng-route来讲下路由的使用...其实主要是 $routeProvider 搭配 ng-view 实现. ng-view的实现原理,基本就是根据路由的切换,动态编译html模板. 更多内容 ...
- windows 10 设置
精简应用 邮件和日历: Get-AppxPackage *communi* | Remove-AppxPackage 新闻: Get-AppxPackage *bing* | Remove-AppxP ...