关于我们为什么需要Schema Registry?

参考,

https://www.confluent.io/blog/how-i-learned-to-stop-worrying-and-love-the-schema-part-1/

https://www.confluent.io/blog/schema-registry-kafka-stream-processing-yes-virginia-you-really-need-one/

https://www.confluent.io/blog/stream-data-platform-2/

Use Avro as Your Data Format

We think Avro is the best choice for a number of reasons:

  1. It has a direct mapping to and from JSON
  2. It has a very compact format. The bulk of JSON, repeating every field name with every single record, is what makes JSON inefficient for high-volume usage.
  3. It is very fast.
  4. It has great bindings for a wide variety of programming languages so you can generate Java objects that make working with event data easier, but it does not require code generation so tools can be written generically for any data stream.
  5. It has a rich, extensible schema language defined in pure JSON
  6. It has the best notion of compatibility for evolving your data over time.

 

One of the critical features of Avro is the ability to define a schema for your data. For example an event that represents the sale of a product might look like this:

{
"time": 1424849130111,
"customer_id": 1234,
"product_id": 5678,
"quantity":3,
"payment_type": "mastercard"
}

It might have a schema like this that defines these five fields:

{
"type": "record",
"doc":"This event records the sale of a product",
"name": "ProductSaleEvent",
"fields" : [
{"name":"time", "type":"long", "doc":"The time of the purchase"},
{"name":"customer_id", "type":"long", "doc":"The customer"},
{"name":"product_id", "type":"long", "doc":"The product"},
{"name":"quantity", "type":"int"},
{"name":"payment",
"type":{"type":"enum",
"name":"payment_types",
"symbols":["cash","mastercard","visa"]},
"doc":"The method of payment"}
]
}

 

Here is how these schemas will be put to use. You will associate a schema like this with each Kafka topic. You can think of the schema much like the schema of a relational database table, giving the requirements for data that is produced into the topic as well as giving instructions on how to interpret data read from the topic.

The schemas end up serving a number of critical purposes:

  1. They let the producers or consumers of data streams know the right fields are need in an event and what type each field is.
  2. They document the usage of the event and the meaning of each field in the “doc” fields.
  3. They protect downstream data consumers from malformed data, as only valid data will be permitted in the topic.

 

The Need For Schemas

Robustness

One of the primary advantages of this type of architecture where data is modeled as streams is that applications are decoupled.

Clarity and Semantics

Worse, the actual meaning of the data becomes obscure and often misunderstood by different applications because there is no real canonical documentation for the meaning of the fields. One person interprets a field one way and populates it accordingly and another interprets it differently.

Compatibility

Schemas also help solve one of the hardest problems in organization-wide data flow: modeling and handling change in data format. Schema definitions just capture a point in time, but your data needs to evolve with your business and with your code.

Schemas give a mechanism for reasoning about which format changes will be compatible and (hence won’t require reprocessing) and which won’t.

Schemas are a Conversation

However data streams are different; they are a broadcast channel. Unlike an application’s database, the writer of the data is, almost by definition, not the reader. And worse, there are many readers, often in different parts of the organization. These two groups of people, the writers and the readers, need a concrete way to describe the data that will be exchanged between them and schemas provide exactly this.

Schemas Eliminate The Manual Labor of Data Science

It is almost a truism that data science, which I am using as a short-hand here for “putting data to effective use”, is 80% parsing, validation, and low-level data munging.

 

KIP-69 - Kafka Schema Registry

pending状态,这个KIP估计会被cancel掉

因为confluent.inc已经提供相应的方案,

https://github.com/confluentinc/schema-registry

http://docs.confluent.io/3.0.1/schema-registry/docs/index.html

比较牛逼的是,有人为这个开发了UI,

https://www.landoop.com/blog/2016/08/schema-registry-ui/

本身使用,都是通过http进行Schema的读写,比较简单

 

设计,

参考, http://docs.confluent.io/3.0.1/schema-registry/docs/design.html

主备架构,通过zk来选主

每个schema需要一个唯一id,这个id也通过zk来保证递增

schema存在kafka的一个特殊的topic中,_schemas,一个单partition的topic

我的理解,在注册和查询schema的时候,是通过local caches进行检索的,kafka的topic可以用于replay来重建caches

Apache Kafka - Schema Registry的更多相关文章

  1. Kafka Schema Registry | 学习Avro Schema

    1.目标 在这个Kafka Schema Registry教程中,我们将了解Schema Registry是什么以及为什么我们应该将它与Apache Kafka一起使用.此外,我们将看到Avro架构演 ...

  2. Kafka topic Schema version mismatch error - org.apache.kafka.common.protocol.types.SchemaException

    Problem description: There is error messge when run spark app using spark streaming Kafka version 0. ...

  3. Spark(四十五):Schema Registry

    很多时候在流数据处理时,我们会将avro格式的数据写入到kafka的topic,但是avro写入到kafka的时候,数据有可能会与版本升级,也就是schema发生变化,此时如果消费端,不知道哪些数据的 ...

  4. 实践部署与使用apache kafka框架技术博文资料汇总

    前一篇Kafka框架设计来自英文原文(Kafka Architecture Design)的翻译及整理文章,非常有借鉴性,本文是从一个企业使用Kafka框架的角度来记录及整理的Kafka框架的技术资料 ...

  5. How-to: Do Real-Time Log Analytics with Apache Kafka, Cloudera Search, and Hue

    Cloudera recently announced formal support for Apache Kafka. This simple use case illustrates how to ...

  6. Flafka: Apache Flume Meets Apache Kafka for Event Processing

    The new integration between Flume and Kafka offers sub-second-latency event processing without the n ...

  7. apache kafka系列之客户端开发-java

    1.依赖包 <dependency>            <groupId>org.apache.kafka</groupId>            <a ...

  8. Apache Kafka - How to Load Test with JMeter

    In this article, we are going to look at how to load test Apache Kafka, a distributed streaming plat ...

  9. Apache Kafka是数据库吗?

    最近思路有些枯竭,找些务虚的话题来凑.本文内容完全来自于Martin Kelppmann在2019年Kafka伦敦峰会上的演讲.顺便提一句,Kelppmann是<Designing Data-I ...

随机推荐

  1. cf596d

    题意:有一排等高的树木,高度都为h.给出每棵树在数轴上的坐标,每次有可能是最左边或者最右边的立着的树倒下,概率都是0.5.最终所有树都倒下.每棵树在倒下的时候有p的概率向左倒,1-p的概率向右倒.如果 ...

  2. MVC中使用Action全局过滤器出现:网页无法正常运作 将您重定向的次数过多。解决办法

    前言当我们访问某个网站的时候需要检测用户是否已经登录(通过Session是否为null),我们知道在WebForm中可以定义一个BasePage类让他继承System.Web.UI.Page,重写它的 ...

  3. win7 打印机共享

    1.在工具->文件夹选项->查看,将"使用简单文件共享"前面的勾勾去掉2.在控制面板->用户帐号,将guest帐户启用3.运行"gpedit.msc&q ...

  4. 3.通过现有的PDB创建一个新的PDB

    实验说明:创建PDB除了可以通过种子PDB创建外,现在测试通过一个现有的用户PDB克隆创建新的PDB数据库 实验步骤: 1.创建测试数据 SQL> alter session set conta ...

  5. Class.forName()的作用

    大家都用过Class.forName(),也都知道是类加载的作用,其实这方法不只是类加载,还有类初始化. 下面用个小例子说明一下: A类,是用来加载的类 /** * 用来测试类加载的类此类有 * 静态 ...

  6. MongoDB 安装

    年初换了个硬盘空间更大的vps,这下终于可以装MongoDB了. 1 配置包管理系统(yum) 建立 /etc/yum.repos.d/mongodb-org-3.2.repo文件.内容如下: [mo ...

  7. 【使用Unity开发Windows Phone上的2D游戏】(2)初识工具

    下载工具 我们需要下载两个工具:Unity 和 2D Toolkit Unity 在我写这篇文章的时候,最新的Unity版本是4.2.1, 下载地址 Unity公司的开发效率实在是很高,我一个多月前开 ...

  8. JavaScript老梗之this对象

    Js中的this关键词貌似是初学者必经的坑 都不例外 我们经常听到其他人说 this对象谁调用指向谁 的确这是最容易理解的 但是我们可以更加深入的去探索下 加深印象以便更加灵活的适用它 这里不得不提下 ...

  9. 使用sp_xml_preparedocument处理XML文档

    有时会在存储过程中处理一些XML格式的数据,所以会用到sp_xml_preparedocument,他可以将XML数据进行读取,然后使用 MSXML 分析器 (Msxmlsql.dll) 对其进行分析 ...

  10. 简单Excel表格上传下载,POI

    一.废话 Excel表格是office软件中的一员,几乎是使用次数最多的办公软件.所以在java进行企业级应用开发的时候经常会用到对应的上传下载便利办公. 目前,比较常用的实现Java导入.导出Exc ...