Spark核心算子
|
Spark RDD: |
|
|
Meaning |
|
|
map(func) |
返回一个新的分布式数据集,该数据集是通过将源的每个元素传递给函数func处理形成的。 |
|
返回一个新的数据集,该数据集是通过func处理后在其上返回true 的源元素形成的。 |
|
|
flatMap(func) |
与map相似,但是每个输入项都可以映射成0个或多个输出项(因此func应该返回Seq而不是单个项)。 |
|
mapPartitions(func) |
与map相似,但是分别在每个RDD的分区(块)上运行,因此当运行在类型为T的RDD上时函数func必须被声明成 Iterator<T> => Iterator<U>(即对RDD中的每个分区的迭代器进行操作)迭代器。 |
|
mapPartitionsWithIndex(func) |
与mapPartitions类似,但它还为func提供表示分区索引的整数值,因此当在类型T的RDD上运行时,func的类型必须为 (Int, Iterator<T>) => Iterator<U>(即带索引的迭代器类型)。 |
|
union(otherDataset) |
返回一个新的数据集,其中包含了源数据集以及参数数据集中的每个元素。 |
|
intersection(otherDataset) |
返回一个新的RDD,其中包含源数据集中和参数数据集交集的元素。 |
|
distinct([numPartitions])) |
返回一个新的数据集,其中包含源数据集的所有不同元素。 |
|
groupByKey([numPartitions]) |
在类型为(K,V)对的数据集上调用时,返回(K,Iterable <V>)对的数据集。 |
|
reduceByKey(func, [numPartitions]) |
当在(K,V)对的数据集上调用时,返回(K,V)对的数据集,其中每个键的值使用给定的reduce函数func进行汇总,该函数必须为(V,V)=> V.与groupByKey一样,reduce任务的数量可以通过可选的第二个参数配置。 |
|
aggregateByKey(zeroValue)(seqOp, combOp, [numPartitions]) |
在(K,V)对的数据集上调用时,返回(K,U)对的数据集,其中每个键的值使用给定的Combine函数和中性的“零”值进行汇总。允许与输入值类型不同的聚合值类型,同时避免不必要的分配。像in中一样groupByKey,reduce任务的数量可以通过可选的第二个参数进行配置。 |
|
sortByKey([ascending], [numPartitions]) |
当在一个(K,V)对数据集上调用时,返回一个按照key值排序的(K,V)对数据集。 |
|
join(otherDataset, [numPartitions]) |
当在(K,V)和(K,W)类型的数据集上调用时,返回类型(K,(V,W))对的数据集,其中每个键都包含所有参与value成对的元素。外连接通过支持leftOuterJoin,rightOuterJoin和fullOuterJoin支持。 |
|
cogroup(otherDataset, [numPartitions]) |
当在(K,V)和(K,W)类型的数据集上调用时,返回(K,(Iterable <V>,Iterable <W>))元组的数据集。此操作也称为groupWith。 |
|
cartesian(otherDataset) |
在类型T和U的数据集上调用时,返回(T,U)对(所有元素对)的数据集(笛卡尔积)。 |
|
coalesce(numPartitions) |
将RDD中的分区数减少到numPartitions。筛选大型数据集后,对于更有效地运行操作很有用。 |
|
repartition(numPartitions) |
随机地重新随机排列RDD中的数据以创建更多或更少的分区,并在整个分区之间保持平衡。这总是会通过网络重新整理所有数据。 |
|
repartitionAndSortWithinPartitions(partitioner) |
根据给定的分区程序对RDD进行重新分区,并在每个结果分区中,按其键对记录进行排序。这比repartition在每个分区内调用然后排序更为有效,因为它可以将排序推入洗牌机制。 |
|
sample(withReplacement, fraction, seed) |
Sample a fraction fraction of the data, with or without replacement, using a given random number generator seed. |
|
pipe(command, [envVars]) |
通过外壳命令(例如Perl或bash脚本)通过管道传递RDD的每个分区。将RDD元素写入进程的stdin,并将输出到其stdout的行作为字符串的RDD返回。 |
|
Action |
Meaning |
|
reduce(func) |
使用函数func(该函数接受两个参数并返回一个)来聚合数据集的元素。该函数应该是可交换的和关联的,以便可以并行正确地计算它。 |
|
collect() |
在驱动程序中将数据集的所有元素作为数组返回。这通常在返回足够小的数据子集的过滤器或其他操作之后很有用。 |
|
count() |
返回数据集中的元素数。 |
|
first() |
返回数据集的第一个元素(类似于take(1))。 |
|
take(n) |
返回具有数据集的前n个元素的数组。 |
|
takeOrdered(n, [ordering]) |
使用自然顺序或自定义比较器返回RDD 的前n个元素。 |
|
saveAsTextFile(path) |
将数据集的元素以文本文件(或文本文件集)的形式写入本地文件系统,HDFS或任何其他Hadoop支持的文件系统中的给定目录中。Spark将在每个元素上调用toString,以将其转换为文件中的一行文本。 |
|
saveAsSequenceFile(path) |
将数据集的元素作为Hadoop SequenceFile写入本地文件系统,HDFS或任何其他Hadoop支持的文件系统中的给定路径中。这在实现Hadoop的Writable接口的键/值对的RDD上可用。在Scala中,它也可用于隐式转换为Writable的类型(Spark包括对基本类型(如Int,Double,String等)的转换)。 |
|
saveAsObjectFile(path) |
使用Java序列化以简单的格式编写数据集的元素,然后可以使用 SparkContext.objectFile()进行加载。 |
|
countByKey() |
仅在类型(K,V)的RDD上可用。返回(K,Int)对,包含每个键的计数。 |
|
foreach(func) |
在数据集的每个元素上运行函数func。通常这样做是出于副作用,例如更新累加器或与外部存储系统交互。 |
|
takeSample(withReplacement, num, [seed]) |
返回带有数据集num个元素的随机样本的数组,带有或不带有替换,可以选择预先指定一个随机数生成器种子。 |
|
Spark Streaming: |
|
|
Transformation |
Meaning |
|
map(func) |
通过将源DStream的每个元素传递给函数func来返回新的DStream 。 |
|
flatMap(func) |
与map相似,但是每个输入项可以映射到0个或多个输出项。 |
|
filter(func) |
通过仅选择func返回true 的源DStream的记录来返回新的DStream 。 |
|
repartition(numPartitions) |
通过创建更多或更少的分区来更改此DStream中的并行度。 |
|
union(otherStream) |
返回一个新的DStream,其中包含源DStream和otherDStream中的元素的并集。 |
|
count() |
通过计算源DStream的每个RDD中的元素数,返回一个新的单元素RDD DStream。 |
|
reduce(func) |
通过使用函数func(带有两个参数并返回一个)来聚合源DStream的每个RDD中的元素,从而返回一个单元素RDD的新DStream 。该函数应具有关联性和可交换性,以便可以并行计算。 |
|
countByValue() |
在元素类型为K的DStream上调用时,返回一个新的(K,Long)对的DStream,其中每个键的值是其在源DStream的每个RDD中的频率。 |
|
reduceByKey(func, [numTasks]) |
在(K,V)对的DStream上调用时,返回一个新的(K,V)对的DStream,其中使用给定的reduce函数聚合每个键的值。注意:默认情况下,这使用Spark的默认并行任务数(本地模式为2,而在集群模式下,此数量由config属性确定spark.default.parallelism)进行分组。您可以传递一个可选numTasks参数来设置不同数量的任务。 |
|
join(otherStream, [numTasks]) |
在(K,V)和(K,W)对的两个DStream上调用时,返回一个新的(K,(V,W))对的DStream,其中每个键都有所有元素对。 |
|
cogroup(otherStream, [numTasks]) |
在(K,V)和(K,W)对的DStream上调用时,返回一个新的(K,Seq [V],Seq [W])元组的DStream。 |
|
transform(func) |
通过对源DStream应用任意的RDD-to-RDD函数来返回新的DStream。这可用于在DStream上执行任意RDD操作。 |
|
updateStateByKey(func) |
返回一个新的“状态” DStream,在该DStream中,通过在键的先前状态和键的新值上应用给定函数来更新每个键的状态。这可用于维护每个键的任意状态数据。 |
|
Transformation |
Meaning |
|
window(windowLength, slideInterval) |
返回基于源DStream的窗口批处理计算的新DStream。 |
|
countByWindow(windowLength, slideInterval) |
返回流中元素的滑动窗口计数。 |
|
reduceByWindow(func, windowLength, slideInterval) |
返回一个新的单元素流,该流是通过使用func在滑动间隔内聚合流中的元素而创建的。该函数应该是关联的和可交换的,以便可以并行正确地计算它。 |
|
reduceByKeyAndWindow(func, windowLength, slideInterval, [numTasks]) |
当在(K,V)对的DStream上调用时,返回新的(K,V)对的DStream,其中使用给定的reduce函数func 在滑动窗口中的批处理上聚合每个键的值。注意:默认情况下,这使用Spark的默认并行任务数(本地模式为2,而在集群模式下,此数量由config属性确定spark.default.parallelism)进行分组。您可以传递一个可选 numTasks参数来设置不同数量的任务。 |
|
reduceByKeyAndWindow(func, invFunc, windowLength, slideInterval, [numTasks]) |
上述方法的一种更有效的版本,reduceByKeyAndWindow()其中,使用前一个窗口的减少值递增计算每个窗口的减少值。这是通过减少进入滑动窗口的新数据并“逆向减少”离开窗口的旧数据来完成的。一个示例是在窗口滑动时“增加”和“减少”键的计数。但是,它仅适用于“可逆归约函数”,即具有相应的“逆归约”函数(作为参数invFunc)的归约函数。像in中一样reduceByKeyAndWindow,reduce任务的数量可以通过可选参数配置。请注意,必须启用检查点才能使用此操作。 |
|
countByValueAndWindow(windowLength, slideInterval, [numTasks]) |
在(K,V)对的DStream上调用时,返回新的(K,Long)对的DStream,其中每个键的值是其在滑动窗口内的频率。像in中一样 reduceByKeyAndWindow,reduce任务的数量可以通过可选参数配置。 |
|
Output Operation |
Meaning |
|
print() |
在运行流应用程序的驱动程序节点上,打印DStream中每批数据的前十个元素。这对于开发和调试很有用。 |
|
saveAsTextFiles(prefix, [suffix]) |
将此DStream的内容另存为文本文件。基于产生在每批间隔的文件名的前缀和后缀:"prefix-TIME_IN_MS[.suffix]"。 |
|
saveAsObjectFiles(prefix, [suffix]) |
将此DStream的内容保存为SequenceFiles序列化Java对象的内容。基于产生在每批间隔的文件名的前缀和 后缀:"prefix-TIME_IN_MS[.suffix]"。 |
|
saveAsHadoopFiles(prefix, [suffix]) |
将此DStream的内容另存为Hadoop文件。基于产生在每批间隔的文件名的前缀和后缀:"prefix-TIME_IN_MS[.suffix]"。 |
|
foreachRDD(func) |
最通用的输出运算符,将函数func应用于从流生成的每个RDD。此功能应将每个RDD中的数据推送到外部系统,例如将RDD保存到文件或通过网络将其写入数据库。请注意,函数func在运行流应用程序的驱动程序进程中执行,并且通常在其中具有RDD操作,这将强制计算流RDD。 |
Spark核心算子的更多相关文章
- Spark RDD概念学习系列之Spark的算子的作用(十四)
Spark的算子的作用 首先,关于spark算子的分类,详细见 http://www.cnblogs.com/zlslch/p/5723857.html 1.Transformation 变换/转换算 ...
- Spark核心—RDD初探
本文目的 最近在使用Spark进行数据清理的相关工作,初次使用Spark时,遇到了一些挑(da)战(ken).感觉需要记录点什么,才对得起自己.下面的内容主要是关于Spark核心-RDD的相关 ...
- Spark RDD概念学习系列之Spark的算子的分类(十一)
Spark的算子的分类 从大方向来说,Spark 算子大致可以分为以下两类: 1)Transformation 变换/转换算子:这种变换并不触发提交作业,完成作业中间过程处理. Transformat ...
- Spark 核心篇-SparkContext
本章内容: 1.功能描述 本篇文章就要根据源码分析SparkContext所做的一些事情,用过Spark的开发者都知道SparkContext是编写Spark程序用到的第一个类,足以说明SparkCo ...
- Spark 核心篇-SparkEnv
本章内容: 1.功能概述 SparkEnv是Spark的执行环境对象,其中包括与众多Executor执行相关的对象.Spark 对任务的计算都依托于 Executor 的能力,所有的 Executor ...
- 科普Spark,Spark核心是什么,如何使用Spark(1)
科普Spark,Spark是什么,如何使用Spark(1)转自:http://www.aboutyun.com/thread-6849-1-1.html 阅读本文章可以带着下面问题:1.Spark基于 ...
- 【二】Spark 核心
spark 核心 spark core RDD创建 >>> RDD转换 >>> RDD缓存 >>> RDD行动 >>> RDD输 ...
- Spark操作算子本质-RDD的容错
Spark操作算子本质-RDD的容错spark模式1.standalone master 资源调度 worker2.yarn resourcemanager 资源调度 nodemanager在一个集群 ...
- spark浅谈(2):SPARK核心编程
一.SPARK-CORE 1.spark核心模块是整个项目的基础.提供了分布式的任务分发,调度以及基本的IO功能,Spark使用基础的数据结构,叫做RDD(弹性分布式数据集),是一个逻辑的数据分区的集 ...
随机推荐
- Essay Fail?可能是引用出了问题
新学期伊始,又有不少成功与雅思分手的学生们海外入学.本以为可以稍微喘口气,却发现漫天的essay接踵而至.因此,Hotessay小编为新瓜蛋子们特地准备了一期essay写作的干货.还不赶紧学起来,用到 ...
- P30 Pro劲敌!DxO官宣新机:排行榜又要变
均为111分,接着是华为Mate 20 Pro.P20 Pro和三星Galaxy S10+,三款机型综合得分均为109分,前10名最后三款机型分别是小米9.iPhone XS Max和HTC U12+ ...
- 配置vSphere Web Client超时值
1.默认超时值120分钟 2.webclient.properties文件位置: Windows系统:C:\ProgramData\VMware\vCenterServer\cfg\vsphe ...
- 安装redis cluster时:undefined method `invoke_with_build_args' for nil:NilClass
gem install -l redis-3.3.3.gem ERROR: Loading command: install (LoadError) cannot load such file -- ...
- 十五、SAP自定义结构体
一.SAP的结构体是以BEGIN OF开始,以END OF结尾,代码如下: 二.输出结果如下
- 080-PHP的if与elseif用法
<?php /* 正确的使用方法: */ $a = 10; $b = 20; if ($a > $b): echo $a . "大于" . $b; elseif ($a ...
- 吴裕雄 Bootstrap 前端框架开发——Bootstrap 字体图标(Glyphicons):glyphicon glyphicon-volume-down
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...
- Maccms后门分析复现(并非官网的Maccms){10.15 第二十二天}
该复现参考网络中的文章,该漏洞复现仅仅是为了学习交流,严禁非法使用!!!! Maccms官网:http://www.maccms.cn/ Maccms网站基于PHP+MYSQL的系统,易用性.功能良好 ...
- HDU - 4082 Hou Yi's secret
题意:射箭落在n个点,任取三点可构成一个三角形,问最大的相似三角形集(一组互相相似的三角形)的个数. 分析: 1.若n个点中有相同的点,要去重,题目中说射箭会形成洞,任选三个洞构成三角形,因此射在同一 ...
- HDU - 5586 Sum(区间增量最大)
题意:将数组A的部分区间值按照函数f(Ai)=(1890*Ai+143)mod10007修改值,区间长度可以为0,问该操作后数组A的最大值. 分析:先求出每个元素的增量,进而求出增量和.通过b[r]- ...