题目链接:http://icpc.njust.edu.cn/Problem/Hdu/1224/

无负环。

代码如下:

 #include<bits/stdc++.h>
using namespace std;
typedef unsigned int ui;
typedef long long ll;
typedef unsigned long long ull;
#define pf printf
#define mem(a,b) memset(a,b,sizeof(a))
#define prime1 1e9+7
#define prime2 1e9+9
#define pi 3.14159265
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define scand(x) scanf("%llf",&x)
#define f(i,a,b) for(int i=a;i<=b;i++)
#define scan(a) scanf("%d",&a)
#define mp(a,b) make_pair((a),(b))
#define P pair<int,int>
#define dbg(args) cout<<#args<<":"<<args<<endl;
#define inf 0x3f3f3f3f
const int maxn=1e4+;
int n,m,t,e;
int c[maxn],head[maxn],nxt[maxn],pre[maxn],d[maxn],in[maxn];
void init()
{
e=;
mem(head,-);
mem(nxt,-);
mem(pre,);
mem(d,-inf);
mem(in,);
}
struct edge{
int v,w;
}p[maxn];
void addedge(int u,int v,int w)
{
p[e].v=v;
p[e].w=w;
nxt[e]=head[u];
head[u]=e++;
}
void SPFA(int src)
{
d[src]=;
queue<int>q;
q.push(src);
in[src]=;
while(!q.empty())
{
int now=q.front();
q.pop();
in[now]=;
for(int i=head[now];~i;i=nxt[i])
{
if(d[p[i].v]<d[now]+p[i].w)
{
pre[p[i].v]=now;
d[p[i].v]=d[now]+p[i].w;
in[p[i].v]=;
q.push(p[i].v);
}
}
}
}
void print(int now)
{
if(pre[now]==)return;
print(pre[now]);
pf("->%d",now);
}
int main()
{
//freopen("input.txt","r",stdin);
//freopen("output.txt","w",stdout);
std::ios::sync_with_stdio(false);
scan(t);
f(tt,,t)
{
init();
scan(n);
f(i,,n)scan(c[i]);
scan(m);
int u,v;
f(i,,m)
{
scanf("%d%d",&u,&v);
if(v==n+)addedge(u,v,);
else addedge(u,v,c[v]);
}
SPFA();
pf("CASE %d#\n",tt);
pf("points : %d\n",d[n+]);
pf("circuit : 1");
print(pre[n+]);
pf("->1\n");
if(tt!=t)pf("\n");
}
}

hdu1224SPFA求最长路加上打印路径的更多相关文章

  1. XYZZY(spfa求最长路)

    http://acm.hdu.edu.cn/showproblem.php?pid=1317 XYZZY Time Limit: 2000/1000 MS (Java/Others)    Memor ...

  2. POJ 3592--Instantaneous Transference【SCC缩点新建图 &amp;&amp; SPFA求最长路 &amp;&amp; 经典】

    Instantaneous Transference Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 6177   Accep ...

  3. POJ - 3249 Test for Job (在DAG图利用拓扑排序中求最长路)

    (点击此处查看原题) 题意 给出一个有n个结点,m条边的DAG图,每个点都有权值,每条路径(注意不是边)的权值为其经过的结点的权值之和,每条路径总是从入度为0的点开始,直至出度为0的点,问所有路径中权 ...

  4. Vulnerable Kerbals CodeForces - 772C【拓展欧几里得建图+DAG上求最长路】

    根据拓展欧几里得对于同余方程 $ax+by=c$ ,有解的条件是 $(a,b)|c$. 那么对于构造的序列的数,前一个数 $a$  和后一个数 $b$ ,应该满足 $a*x=b(mod m)$ 即 $ ...

  5. spfa求最长路

    http://poj.org/problem?id=1932 spfa求最长路,判断dist[n] > 0,需要注意的是有正环存在,如果有环存在,那么就要判断这个环上的某一点是否能够到达n点,如 ...

  6. 训练赛 Grouping(强连通分量缩点 + DAG求最长路)

    http://acm.sdut.edu.cn:8080/vjudge/contest/view.action?cid=158#problem/F 大致题意:给出n个人和m种关系(ti,si),表示ti ...

  7. 【HDOJ1217】【Floyd求最长路】

    http://acm.hdu.edu.cn/showproblem.php?pid=1217 Arbitrage Time Limit: 2000/1000 MS (Java/Others)    M ...

  8. hdu 1534(差分约束+spfa求最长路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1534 思路:设s[i]表示工作i的开始时间,v[i]表示需要工作的时间,则完成时间为s[i]+v[i] ...

  9. HDU - 6201 transaction transaction transaction(spfa求最长路)

    题意:有n个点,n-1条边的无向图,已知每个点书的售价,以及在边上行走的路费,问任选两个点作为起点和终点,能获得的最大利益是多少. 分析: 1.从某个结点出发,首先需要在该结点a花费price[a]买 ...

随机推荐

  1. doctrine queryBuilder

    为了能够方便的切换数据库,我们有必要使用doctrine的queryBuilder, 但是估计很多人都是不喜欢的(我也是),之前尝试用的时候,发现在doctrine定义的SELECT语法中并没有CON ...

  2. NVARCHAR(MAX) 的最大长度

    本文使用的环境是SQL Server 2017, 主机是64位操作系统. 大家都知道,Micorosoft Docs对 max参数的定义是:max 指定最大的存储空间是2GB,该注释是不严谨的: nv ...

  3. 深入理解JavaScript的函数作用域

    什么是作用域 ? 作用域:一个变量可以生效的范围. 变量不是在所有地方都可以使用的,而这个变量的使用范围就是我们要说的作用域. 注意:在JavaScript中,划分作用域也是用大括号划分的, 但是在 ...

  4. Vizceral小白入门

    Vizceral小白入门 接到一个任务,要求将N个program可视化,能一目了然查看当前爬虫状态.记得之前做测试时,一个queue service前端可视化效果不错,经询问是用vizceral开源框 ...

  5. 使用contenteditable+div模拟textarea文本域实现高度自适应

    使用contenteditable+div模拟textarea文本域实现高度自适应 开发过程中由于需要在发送消息的时候需要有一个可以高度自适应的文本域,一开始是使用textarea并搭配auto-si ...

  6. 关于使用map存放数据乱序”问题“

    今天做项目中遇到了一个比较低级的错误,如果没注意将会变的更麻烦... 其实吧,也不难,要求就是将list中的值转为map后,再顺序输出map中的值,list的顺序怎样,加入到map的顺序也应怎样,不能 ...

  7. python 深浅拷贝 元组 字典 集合操作

    深浅拷贝 :值拷贝 :ls = [,,] res = ls 则print(res)就是[,,] 浅拷贝 :ls.copy() 深拷贝:ls3 = deepcopy(ls) # 新开辟列表空间,ls列表 ...

  8. Linux 宝典《最新版》

    Linux 概述 什么是Linux?Linux是一套免费使用和自由传播的类Unix操作系统,是一个基于POSIX和Unix的多用户.多任务.支持多线程和多CPU的操作系统.它能运行主要的Unix工具软 ...

  9. .Net Core项目中整合Serilog

    前言:Serilog是.NET应用程序的诊断日志记录库.它易于设置,具有简洁的API,并且可以在所有最新的.NET平台上运行.尽管即使在最简单的应用程序中它也很有用,但当对复杂的,分布式的和异步的应用 ...

  10. 教你高效使用数据可视化BI软件创建医院卫生耗材运营监控大屏

    灯果数据可视化BI软件是新一代人工智能数据可视化大屏软件,内置丰富的大屏模板,可视化编辑操作,无需任何经验就可以创建属于你自己的大屏.大家可以在他们的官网下载软件.   本文以医院卫生耗材运营监控大屏 ...