cs231n spring 2017 lecture8 Deep Learning Networks
1. CPU vs. GPU:
CPU核心少(几个),更擅长串行任务。GPU有很多核心(几千个),每一个核都弱,有自己的内存(几个G),很适合并行任务。GPU最典型的应用是矩阵运算。
GPU编程:1)CUDA,只能在英伟达;2)OpenCL类似CUDA,好处是可以跑在任何平台上,但相对慢一些。深度学习可以直接调用现成的库,不用自己写CUDA代码。
用cuDNN比不用快几倍。
深度学习的瓶颈可能不在GPU的运算,而在GPU和数据的通信上,解决办法是:1)把数据读入RAM;2)用SSD而不是HDD;3)用CPU多线程提前读取数据。
2. 深度学习框架:Caffe(UC Berkeley)/Caffe2(Facebook), Torch(NYU, Facebook)/PyTorch(Facebook), Theano(U Montreal)/TensorFlow(Google), Paddle(Baidu), CNTK(Microsoft), MXNet(Amazon).
框架分为static(TensorFlow、Caffe2)和dynamic(PyTorch)。TensorFlow是很安全的选择。PyTorch最适合做研究。TensorFlow和Caffe2更适合实际部署应用。
cs231n spring 2017 lecture8 Deep Learning Networks的更多相关文章
- cs231n spring 2017 lecture8 Deep Learning Networks 听课笔记
1. CPU vs. GPU: CPU核心少(几个),更擅长串行任务.GPU有很多核心(几千个),每一个核都弱,有自己的内存(几个G),很适合并行任务.GPU最典型的应用是矩阵运算. GPU编程:1) ...
- cs231n spring 2017 lecture7 Training Neural Networks II 听课笔记
1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...
- cs231n spring 2017 lecture7 Training Neural Networks II
1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...
- cs231n spring 2017 lecture10 Recurrent Neural Networks 听课笔记
(没太听明白,下次重新听一遍) 1. Recurrent Neural Networks
- cs231n spring 2017 lecture6 Training Neural Networks I 听课笔记
1. 激活函数: 1)Sigmoid,σ(x)=1/(1+e-x).把输出压缩在(0,1)之间.几个问题:(a)x比较大或者比较小(比如10,-10),sigmoid的曲线很平缓,导数为0,在用链式法 ...
- cs231n spring 2017 lecture10 Recurrent Neural Networks
(没太听明白,下次重新听一遍) 1. Recurrent Neural Networks
- cs231n spring 2017 lecture6 Training Neural Networks I
1. 激活函数: 1)Sigmoid,σ(x)=1/(1+e-x).把输出压缩在(0,1)之间.几个问题:(a)x比较大或者比较小(比如10,-10),sigmoid的曲线很平缓,导数为0,在用链式法 ...
- cs231n spring 2017 lecture14 Reinforcement Learning 听课笔记
(没太听明白,下次重新听) 1. 增强学习 有一个 Agent 和 Environment 交互.在 t 时刻,Agent 获知状态是 st,做出动作是 at:Environment 一方面给出 Re ...
- cs231n spring 2017 lecture5 Convolutional Neural Networks听课笔记
1. 之前课程里,一个32*32*3的图像被展成3072*1的向量,左乘大小为10*3072的权重矩阵W,可以得到一个10*1的得分,分别对应10类标签. 在Convolution Layer里,图像 ...
随机推荐
- 第 36 章 TCP/IP协议基础
问题一:为什么要有缓存表?为什么表项要有过期时间而不是一直有效 1.参考网址: 1)网络——ARP协议 2)linux arp机制解析 2.解答: 2.1 ARP缓存可以减小广播量,当主机发送一个AR ...
- mysql my.ini 性能调优
MYSQL服务器my.cnf配置文档详解 硬件:内存16G [client] port = 3306 socket = /data/3306/mysql.sock [mysql] no-auto-re ...
- Exit of “> ” mode in Unix shell
https://unix.stackexchange.com/questions/118209/exit-of-mode-in-unix-shell ^D will only work if a pr ...
- 【MySQL参数优化】根据架构优化
根据MySQL的架构优化 参数调整的最终效果: 1)SQL执行速度足够快 2)业务吞吐量足够高:TPS,QPS 3)系统负载可控,合理:cpu,io负载 在调整参数的时候,应该熟悉mysql的体系架构 ...
- 第1章 分布式系统概念与ZooKeeper简介
ZooKeeper分布式专题与Dubbo微服务入门 第1章 分布式系统概念与ZooKeeper简介 1-1 zookeeper简介 1-2 什么是分布式系统 略 1-3 分布式系统的瓶颈以及zk的相关 ...
- thrift生成c++服务端和客户端
https://blog.csdn.net/jdx0909/article/details/84727523 https://blog.csdn.net/luoyexuge/article/detai ...
- [Shoi2013]超级跳马(DP+矩阵乘法)
设f[i][j]表示方案数,显然有一个O(m2n)的暴力DP法,但实际上可以按距离当前位置的奇偶性分成s1[i][j]和s2[i][j],然后这个暴力DP可以优化到O(nm)的暴力.于是有这样的递推式 ...
- 关于 TCP 和 UDP 协议
TCP\UDP 两者区别总结:https://blog.csdn.net/striveb/article/details/84063712 图解HTTP,状态码,TCP.UDP等网络协议相关总结(持续 ...
- 时间API
1. 时间API 我们的时间在java里是long类型的整数,这个整数称之为时间戳(也叫格林威治时间),即从1970-01-01到现在为止所经过的毫秒数,单有这个时间戳是不能准确表达世界各地的时间,还 ...
- 吴裕雄--天生自然TensorFlow高层封装:Keras-TensorFlow API
# 1. 模型定义. import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist_ ...