L0,L1,L2正则化浅析
在机器学习的概念中,我们经常听到L0,L1,L2正则化,本文对这几种正则化做简单总结。
1、概念
L0正则化的值是模型参数中非零参数的个数。
L1正则化表示各个参数绝对值之和。
L2正则化标识各个参数的平方的和的开方值。
2、先讨论几个问题:
1)实现参数的稀疏有什么好处吗?
一个好处是可以简化模型,避免过拟合。因为一个模型中真正重要的参数可能并不多,如果考虑所有的参数起作用,那么可以对训练数据可以预测的很好,但是对测试数据就只能呵呵了。另一个好处是参数变少可以使整个模型获得更好的可解释性。
2)参数值越小代表模型越简单吗?
是的。为什么参数越小,说明模型越简单呢,这是因为越复杂的模型,越是会尝试对所有的样本进行拟合,甚至包括一些异常样本点,这就容易造成在较小的区间里预测值产生较大的波动,这种较大的波动也反映了在这个区间里的导数很大,而只有较大的参数值才能产生较大的导数。因此复杂的模型,其参数值会比较大。
3、L0正则化
根据上面的讨论,稀疏的参数可以防止过拟合,因此用L0范数(非零参数的个数)来做正则化项是可以防止过拟合的。
从直观上看,利用非零参数的个数,可以很好的来选择特征,实现特征稀疏的效果,具体操作时选择参数非零的特征即可。但因为L0正则化很难求解,是个NP难问题,因此一般采用L1正则化。L1正则化是L0正则化的最优凸近似,比L0容易求解,并且也可以实现稀疏的效果。
4、L1正则化
L1正则化在实际中往往替代L0正则化,来防止过拟合。在江湖中也人称Lasso。
L1正则化之所以可以防止过拟合,是因为L1范数就是各个参数的绝对值相加得到的,我们前面讨论了,参数值大小和模型复杂度是成正比的。因此复杂的模型,其L1范数就大,最终导致损失函数就大,说明这个模型就不够好。
5、L2正则化
L2正则化可以防止过拟合的原因和L1正则化一样,只是形式不太一样。
L2范数是各参数的平方和再求平方根,我们让L2范数的正则项最小,可以使W的每个元素都很小,都接近于0。但与L1范数不一样的是,它不会是每个元素为0,而只是接近于0。越小的参数说明模型越简单,越简单的模型越不容易产生过拟合现象。
L2正则化江湖人称Ridge,也称“岭回归”
6、Lasso和Ridge对比
Lasso和Ridge可以分别表示为:
我们考虑两维的情况,在(w1, w2)平面上可以画出目标函数的等高线,而约束条件则成为平面上半径为C的一个 norm ball 。等高线与 norm ball 首次相交的地方就是最优解:
可以看到,L1-ball 与L2-ball 的不同就在于L1在和每个坐标轴相交的地方都有“角”出现,有很大的几率等高线会和L1-ball在四个角,也就是坐标轴上相遇,坐标轴上就可以产生稀疏,因为某一维可以表示为0。而等高线与L2-ball在坐标轴上相遇的概率就比较小了。
总结:L1会趋向于产生少量的特征,而其他的特征都是0,而L2会选择更多的特征,这些特征都会接近于0。Lasso在特征选择时候非常有用,而Ridge就只是一种规则化而已。在所有特征中只有少数特征起重要作用的情况下,选择Lasso比较合适,因为它能自动选择特征。而如果所有特征中,大部分特征都能起作用,而且起的作用很平均,那么使用Ridge也许更合适。
Reference:
L0,L1,L2正则化浅析的更多相关文章
- L0/L1/L2范数的联系与区别
L0/L1/L2范数的联系与区别 标签(空格分隔): 机器学习 最近快被各大公司的笔试题淹没了,其中有一道题是从贝叶斯先验,优化等各个方面比较L0.L1.L2范数的联系与区别. L0范数 L0范数表示 ...
- 防止过拟合:L1/L2正则化
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...
- ML-线性模型 泛化优化 之 L1 L2 正则化
认识 L1, L2 从效果上来看, 正则化通过, 对ML的算法的任意修改, 达到减少泛化错误, 但不减少训练误差的方式的统称 训练误差 这个就损失函数什么的, 很好理解. 泛化错误 假设 我们知道 预 ...
- 机器学习中L1,L2正则化项
搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不 ...
- 机器学习中的规则化范数(L0, L1, L2, 核范数)
目录: 一.L0,L1范数 二.L2范数 三.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问 ...
- L0/L1/L2范数(转载)
一.首先说一下范数的概念: 向量的范数可以简单形象的理解为向量的长度,或者向量到零点的距离,或者相应的两个点之间的距离. 向量的范数定义:向量的范数是一个函数||x||,满足非负性||x|| > ...
- 机器学习中正则惩罚项L0/L1/L2范数详解
https://blog.csdn.net/zouxy09/article/details/24971995 原文转自csdn博客,写的非常好. L0: 非零的个数 L1: 参数绝对值的和 L2:参数 ...
- L1,L2正则化代码
# L1正则 import numpy as np from sklearn.linear_model import Lasso from sklearn.linear_model import SG ...
- L1和L2正则化(转载)
[深度学习]L1正则化和L2正则化 在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况 ...
随机推荐
- python接口自动化26-发xml格式post请求《转载》
python接口自动化26-发xml格式post请求 https://cloud.tencent.com/developer/article/1164987
- 73.Python中ORM聚合函数详解:Count
Count:用来求某个数据的个数. 在以下所有的示例中所采用的模型为: from django.db import models # 定义作者模型 class Author(models.Model) ...
- 九十九、SAP中ALV事件之十二,给ALV的标题栏添加图片
一.在OAER中找一个喜欢的图片,对象标识为“TRVPICTURE04” 二.来到我们的代码区,输入代码 三.效果如下 很完美
- 081-PHP的do-while循环
<?php $i = 1; do { echo $i; $i = $i +1; } while ($i <= 8); ?>
- log4j 打印日志
# Set log levels # 设置日志级别 log4j.rootLogger = INFO, DebugFile,Console, LogFile, ErrorFile ## Disa ...
- opencv+python+dlib人脸关键点检测、实时检测
安装的是anaconde3.python3.7.3,3.7环境安装dlib太麻烦, 在anaconde3中新建环境python3.6.8, 在3.6环境下安装dlib-19.6.1-cp36-cp36 ...
- hdu 1257 最少拦截系统 求连续递减子序列个数 (理解二分)
最少拦截系统 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Subm ...
- Linux系统中的变量PATH
PATH 作用 在Linux安装一些可执行文件通常要添加路径环境变量PATH,PATH环境变量通俗的讲就是把程序的路径"备案"到系统中,这样执行这些程序时就不需要输入完整路径,直接 ...
- Airflow 使用 Celery 时,如何添加 Celery 配置
背景 前段时间我选用了 Airflow 对 wms 进行数据归档,在运行一段时间后,经常发现会报以下错误: [-- ::,: WARNING/ForkPoolWorker-] Failed opera ...
- nested exception is java.lang.IllegalArgumentException: warning no match for this type name: res [Xlint:invalidAbsoluteTypeName]
注:内有单词(sping)写错,请忽略,不影响程序运行 运行时报错: Exception in thread "main" org.springframework.beans.fa ...