机器学习的概念中,我们经常听到L0,L1,L2正则化,本文对这几种正则化做简单总结。

1、概念

L0正则化的值是模型参数中非零参数的个数。

L1正则化表示各个参数绝对值之和。

L2正则化标识各个参数的平方的和的开方值。

2、先讨论几个问题:

1)实现参数的稀疏有什么好处吗?

一个好处是可以简化模型,避免过拟合。因为一个模型中真正重要的参数可能并不多,如果考虑所有的参数起作用,那么可以对训练数据可以预测的很好,但是对测试数据就只能呵呵了。另一个好处是参数变少可以使整个模型获得更好的可解释性。

2)参数值越小代表模型越简单吗?

是的。为什么参数越小,说明模型越简单呢,这是因为越复杂的模型,越是会尝试对所有的样本进行拟合,甚至包括一些异常样本点,这就容易造成在较小的区间里预测值产生较大的波动,这种较大的波动也反映了在这个区间里的导数很大,而只有较大的参数值才能产生较大的导数。因此复杂的模型,其参数值会比较大。

3、L0正则化

根据上面的讨论,稀疏的参数可以防止过拟合,因此用L0范数(非零参数的个数)来做正则化项是可以防止过拟合的。

从直观上看,利用非零参数的个数,可以很好的来选择特征,实现特征稀疏的效果,具体操作时选择参数非零的特征即可。但因为L0正则化很难求解,是个NP难问题,因此一般采用L1正则化。L1正则化是L0正则化的最优凸近似,比L0容易求解,并且也可以实现稀疏的效果。

4、L1正则化

L1正则化在实际中往往替代L0正则化,来防止过拟合。在江湖中也人称Lasso。

L1正则化之所以可以防止过拟合,是因为L1范数就是各个参数的绝对值相加得到的,我们前面讨论了,参数值大小和模型复杂度是成正比的。因此复杂的模型,其L1范数就大,最终导致损失函数就大,说明这个模型就不够好。

5、L2正则化

L2正则化可以防止过拟合的原因和L1正则化一样,只是形式不太一样。

L2范数是各参数的平方和再求平方根,我们让L2范数的正则项最小,可以使W的每个元素都很小,都接近于0。但与L1范数不一样的是,它不会是每个元素为0,而只是接近于0。越小的参数说明模型越简单,越简单的模型越不容易产生过拟合现象。

L2正则化江湖人称Ridge,也称“岭回归”

6、Lasso和Ridge对比

Lasso和Ridge可以分别表示为:

我们考虑两维的情况,在(w1, w2)平面上可以画出目标函数的等高线,而约束条件则成为平面上半径为C的一个 norm ball 。等高线与 norm ball 首次相交的地方就是最优解:

可以看到,L1-ball 与L2-ball 的不同就在于L1在和每个坐标轴相交的地方都有“角”出现,有很大的几率等高线会和L1-ball在四个角,也就是坐标轴上相遇,坐标轴上就可以产生稀疏,因为某一维可以表示为0。而等高线与L2-ball在坐标轴上相遇的概率就比较小了。

总结:L1会趋向于产生少量的特征,而其他的特征都是0,而L2会选择更多的特征,这些特征都会接近于0。Lasso在特征选择时候非常有用,而Ridge就只是一种规则化而已。在所有特征中只有少数特征起重要作用的情况下,选择Lasso比较合适,因为它能自动选择特征。而如果所有特征中,大部分特征都能起作用,而且起的作用很平均,那么使用Ridge也许更合适。

Reference:

机器学习中的范数规则化之(一)L0、L1与L2范数

L0,L1,L2正则化浅析的更多相关文章

  1. L0/L1/L2范数的联系与区别

    L0/L1/L2范数的联系与区别 标签(空格分隔): 机器学习 最近快被各大公司的笔试题淹没了,其中有一道题是从贝叶斯先验,优化等各个方面比较L0.L1.L2范数的联系与区别. L0范数 L0范数表示 ...

  2. 防止过拟合:L1/L2正则化

    正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...

  3. ML-线性模型 泛化优化 之 L1 L2 正则化

    认识 L1, L2 从效果上来看, 正则化通过, 对ML的算法的任意修改, 达到减少泛化错误, 但不减少训练误差的方式的统称 训练误差 这个就损失函数什么的, 很好理解. 泛化错误 假设 我们知道 预 ...

  4. 机器学习中L1,L2正则化项

    搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不 ...

  5. 机器学习中的规则化范数(L0, L1, L2, 核范数)

    目录: 一.L0,L1范数 二.L2范数 三.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问 ...

  6. L0/L1/L2范数(转载)

    一.首先说一下范数的概念: 向量的范数可以简单形象的理解为向量的长度,或者向量到零点的距离,或者相应的两个点之间的距离. 向量的范数定义:向量的范数是一个函数||x||,满足非负性||x|| > ...

  7. 机器学习中正则惩罚项L0/L1/L2范数详解

    https://blog.csdn.net/zouxy09/article/details/24971995 原文转自csdn博客,写的非常好. L0: 非零的个数 L1: 参数绝对值的和 L2:参数 ...

  8. L1,L2正则化代码

    # L1正则 import numpy as np from sklearn.linear_model import Lasso from sklearn.linear_model import SG ...

  9. L1和L2正则化(转载)

    [深度学习]L1正则化和L2正则化 在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况 ...

随机推荐

  1. 在远程服务器上执行本地的shell脚本

    在远程服务器上执行本地的shell脚本 [root@localhost zzx]# sh echoip.sh 192.168.67.131[root@localhost zzx]# ssh root@ ...

  2. JQuery 多属性选择节点

    JQuery 1.6.0+以后用prop()代替attr(); 多属性选择节点 $("input[type=checkbox][name='first2'][value='first4']& ...

  3. 实验吧-密码学-Fair-Play(Playfair解密)

    这个题是Playfair解密. Playfair解密算法首先将密钥填写在一个5*5的矩阵中(去Q留Z),矩阵中其它未用到的字母按顺序填在矩阵剩余位置中,根据替换矩阵由密文得到明文. 对密文解密规则如下 ...

  4. 五、React事件方法(自写一个方法(函数),然后用按钮onClick触发它、自写方法改变this指向3种写法、

    上接:https://www.cnblogs.com/chenxi188/p/11782349.html 项目目录: my-app/ README.md node_modules/ package.j ...

  5. HDU 5461:Largest Point

    Largest Point Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) To ...

  6. MVC学生管理系统-阶段II(添加学生信息)

    项目源码 :https://download.csdn.net/download/weixin_44718300/11091042 前期准备,主体框架,学生列表显示    请看上一篇文章 本文是对阶段 ...

  7. HTML拖放

    <html><head><style>.droptarget {    float: left;     width: 100px;     height: 35p ...

  8. python可移植支持代码;用format.节省打印输出参数代码;math模块;

    1.多平台移植代码: #!/usr/bin/env python3 这一行比较特殊,称为 shebang 行,在 Python 脚本中,你应该一直将它作为第一行. 请注意行中的第一个字符是井号(#). ...

  9. 使用docker-sync解决docker for mac 启动的虚拟容器程序运行缓慢的问题

    背景: 新入职的公司有个非常OG的大项目,为了避免新同学重复造轮子,有哥们已经把项目需要的所有打好了一个镜像供我们启动docker. 初次启动docker 使用的命令如下: docker run -i ...

  10. python try-except处理异常的常用方法分析

    在写python程序时遇到异常想要进行处理时,可以使用try-except来处理,例如: try: 语句1 语句2 . . 语句N except .........: do something ... ...