机器学习的概念中,我们经常听到L0,L1,L2正则化,本文对这几种正则化做简单总结。

1、概念

L0正则化的值是模型参数中非零参数的个数。

L1正则化表示各个参数绝对值之和。

L2正则化标识各个参数的平方的和的开方值。

2、先讨论几个问题:

1)实现参数的稀疏有什么好处吗?

一个好处是可以简化模型,避免过拟合。因为一个模型中真正重要的参数可能并不多,如果考虑所有的参数起作用,那么可以对训练数据可以预测的很好,但是对测试数据就只能呵呵了。另一个好处是参数变少可以使整个模型获得更好的可解释性。

2)参数值越小代表模型越简单吗?

是的。为什么参数越小,说明模型越简单呢,这是因为越复杂的模型,越是会尝试对所有的样本进行拟合,甚至包括一些异常样本点,这就容易造成在较小的区间里预测值产生较大的波动,这种较大的波动也反映了在这个区间里的导数很大,而只有较大的参数值才能产生较大的导数。因此复杂的模型,其参数值会比较大。

3、L0正则化

根据上面的讨论,稀疏的参数可以防止过拟合,因此用L0范数(非零参数的个数)来做正则化项是可以防止过拟合的。

从直观上看,利用非零参数的个数,可以很好的来选择特征,实现特征稀疏的效果,具体操作时选择参数非零的特征即可。但因为L0正则化很难求解,是个NP难问题,因此一般采用L1正则化。L1正则化是L0正则化的最优凸近似,比L0容易求解,并且也可以实现稀疏的效果。

4、L1正则化

L1正则化在实际中往往替代L0正则化,来防止过拟合。在江湖中也人称Lasso。

L1正则化之所以可以防止过拟合,是因为L1范数就是各个参数的绝对值相加得到的,我们前面讨论了,参数值大小和模型复杂度是成正比的。因此复杂的模型,其L1范数就大,最终导致损失函数就大,说明这个模型就不够好。

5、L2正则化

L2正则化可以防止过拟合的原因和L1正则化一样,只是形式不太一样。

L2范数是各参数的平方和再求平方根,我们让L2范数的正则项最小,可以使W的每个元素都很小,都接近于0。但与L1范数不一样的是,它不会是每个元素为0,而只是接近于0。越小的参数说明模型越简单,越简单的模型越不容易产生过拟合现象。

L2正则化江湖人称Ridge,也称“岭回归”

6、Lasso和Ridge对比

Lasso和Ridge可以分别表示为:

我们考虑两维的情况,在(w1, w2)平面上可以画出目标函数的等高线,而约束条件则成为平面上半径为C的一个 norm ball 。等高线与 norm ball 首次相交的地方就是最优解:

可以看到,L1-ball 与L2-ball 的不同就在于L1在和每个坐标轴相交的地方都有“角”出现,有很大的几率等高线会和L1-ball在四个角,也就是坐标轴上相遇,坐标轴上就可以产生稀疏,因为某一维可以表示为0。而等高线与L2-ball在坐标轴上相遇的概率就比较小了。

总结:L1会趋向于产生少量的特征,而其他的特征都是0,而L2会选择更多的特征,这些特征都会接近于0。Lasso在特征选择时候非常有用,而Ridge就只是一种规则化而已。在所有特征中只有少数特征起重要作用的情况下,选择Lasso比较合适,因为它能自动选择特征。而如果所有特征中,大部分特征都能起作用,而且起的作用很平均,那么使用Ridge也许更合适。

Reference:

机器学习中的范数规则化之(一)L0、L1与L2范数

L0,L1,L2正则化浅析的更多相关文章

  1. L0/L1/L2范数的联系与区别

    L0/L1/L2范数的联系与区别 标签(空格分隔): 机器学习 最近快被各大公司的笔试题淹没了,其中有一道题是从贝叶斯先验,优化等各个方面比较L0.L1.L2范数的联系与区别. L0范数 L0范数表示 ...

  2. 防止过拟合:L1/L2正则化

    正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...

  3. ML-线性模型 泛化优化 之 L1 L2 正则化

    认识 L1, L2 从效果上来看, 正则化通过, 对ML的算法的任意修改, 达到减少泛化错误, 但不减少训练误差的方式的统称 训练误差 这个就损失函数什么的, 很好理解. 泛化错误 假设 我们知道 预 ...

  4. 机器学习中L1,L2正则化项

    搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不 ...

  5. 机器学习中的规则化范数(L0, L1, L2, 核范数)

    目录: 一.L0,L1范数 二.L2范数 三.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问 ...

  6. L0/L1/L2范数(转载)

    一.首先说一下范数的概念: 向量的范数可以简单形象的理解为向量的长度,或者向量到零点的距离,或者相应的两个点之间的距离. 向量的范数定义:向量的范数是一个函数||x||,满足非负性||x|| > ...

  7. 机器学习中正则惩罚项L0/L1/L2范数详解

    https://blog.csdn.net/zouxy09/article/details/24971995 原文转自csdn博客,写的非常好. L0: 非零的个数 L1: 参数绝对值的和 L2:参数 ...

  8. L1,L2正则化代码

    # L1正则 import numpy as np from sklearn.linear_model import Lasso from sklearn.linear_model import SG ...

  9. L1和L2正则化(转载)

    [深度学习]L1正则化和L2正则化 在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况 ...

随机推荐

  1. ORA-22813 ORA-06512

    ORA-22813:操作数值超出系统限制. 原因:   对象或集合值太大.SORT上下文中值的大小可能超过30k,或者可用内存的大小可能太大. 操作:  选择其他值并重试该操作. ORA-06512错 ...

  2. 十二、JavaScript之变量申明

    一.代码如下 二.运行效果如下 <!DOCTYPE html> <html> <meta http-equiv="Content-Type" cont ...

  3. HDU 4866 多校1 主席树+扫描线

    终于是解决了这个题目了 不过不知道下一次碰到主席树到底做不做的出来,这个东西稍微难一点就不一定能做得出 离散化+扫描线式的建树,所以对于某个坐标二分找到对应的那颗主席树,即搜索出结果即可(因为是扫描线 ...

  4. 干货分享|留学Essay怎么写?

    留学生活其实就是分割成一个个deadline,留学就是赶完一个又一个deadline.朋友同学的革命情感源自赶一个个deadline时候的不离不弃,相知相守,无数个夜里大家群里打卡,你今天Essay写 ...

  5. VUE swiper.js引用使用轮播图

    <template> <div class="home"> <div class="swiper-container"> & ...

  6. 基于Ambari Server部署HDP集群实战案例

    基于Ambari Server部署HDP集群实战案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.部署Ambari Server端 博主推荐阅读: https://www.c ...

  7. HDU - 6025 Coprime Sequence(前缀gcd+后缀gcd)

    题意:去除数列中的一个数字,使去除后数列中所有数字的gcd尽可能大. 分析:这个题所谓的Coprime Sequence,就是个例子而已嘛,题目中没有任何语句说明给定的数列所有数字gcd一定为1→_→ ...

  8. Mybatis实体类的映射文件中select,insert语句使用

    id:在命名空间中唯一的标识符,可以被用来引用这条语句. parameterType:设置传入这条语句的参数的数据类型,如int,String...... resultType:设置从这条语句中返回数 ...

  9. 【pwnable.kr】random

    pwnable从入门到放弃第七题. ssh random@pwnable.kr -p2222 (pw:guest) 目前为止做的最快的一道题... #include <stdio.h> i ...

  10. node —— 静态资源文件管理

    var http = require("http"); var url = require("url"); var fs = require("fs& ...