二叉树

  节点定义

 class Node(object):
def __init__(self, item):
self.item = item
self.left = None
self.right = None

  二叉树定义

 class Tree(object):
def __init__(self):
self.root = None def add(self, item):
node = Node(item)
# 空树直接插入
if self.root == None:
self.root = node else:
cur_list = [self.root]
while True:
# 定义一个列表存储当前遍历节点
cur_node = cur_list.pop(0) # 当前节点左孩子为空直接插入,否则将该左孩子追加到遍历列表,以便当前节点右孩子也为非空时继续遍历下一层
if cur_node.left == None:
cur_node.left = node
break
else:
cur_list.append(cur_node.left)
# 当前节点右孩子为空直接插入,否则将该右孩子追加到遍历列表,以便继续遍历下一层
if cur_node.right == None:
cur_node.right = node
break
else:
cur_list.append(cur_node.right) # 广度遍历
def travel(self):
if not self.root:
print(None)
return None
q = [self.root]
while q:
cur_node = q.pop(0)
print(cur_node.item)
if cur_node.left:
q.append(cur_node.left)
if cur_node.right:
q.append(cur_node.right) # 深度遍历----前序遍历DLR
def dlr(self, node):
if node == None:
return
print(node.item)
self.dlr(node.left)
self.dlr(node.right) # 深度遍历----中序遍历LDR
def ldr(self, node):
if node == None:
return
self.ldr(node.left)
print(node.item)
self.ldr(node.right) # 深度遍历----后序遍历LRD
def lrd(self, node):
if node == None:
return
self.lrd(node.left)
self.lrd(node.right)
print(node.item)

  二叉树使用  

 tree = Tree()
tree.add(1)
tree.add(2)
tree.add(3)
tree.add(4)
tree.add(5)
print("----广度遍历----")
tree.travel()
print("----深度遍历:DLR----")
tree.dlr(tree.root)
print("----深度遍历:LDR----")
tree.ldr(tree.root)
print("----深度遍历:LRD----")
tree.lrd(tree.root)

二叉树使用

排序二叉树

  节点定义

 class Node(object):
def __init__(self, item):
self.item = item
self.left = None
self.right = None

  排序二叉树定义

 class SortTree(object):
def __init__(self):
self.root = None def insert(self, item):
node = Node(item)
cur_node = self.root
if not self.root:
self.root = node
else:
while True:
if node.item < cur_node.item:
if cur_node.left == None:
cur_node.left=node
break
else:
cur_node=cur_node.left
else:
if cur_node.right == None:
cur_node.right=node
break
else:
cur_node=cur_node.right # 广度遍历
def travel(self):
if not self.root:
print(None)
return None
q = [self.root]
while q:
cur_node = q.pop(0)
print(cur_node.item)
if cur_node.left:
q.append(cur_node.left)
if cur_node.right:
q.append(cur_node.right) # 深度遍历----前序遍历DLR
def dlr(self, node):
if node == None:
return
print(node.item)
self.dlr(node.left)
self.dlr(node.right) # 深度遍历----中序遍历LDR
def ldr(self, node):
if node == None:
return
self.ldr(node.left)
print(node.item)
self.ldr(node.right) # 深度遍历----后序遍历LRD
def lrd(self, node):
if node == None:
return
self.lrd(node.left)
self.lrd(node.right)
print(node.item)

  排序二叉树使用  

 tree=SortTree()
tree.insert(1)
tree.insert(30)
tree.insert(8)
tree.insert(20)
tree.ldr(tree.root)

排序二叉树使用

数据结构----二叉树Tree和排序二叉树的更多相关文章

  1. 【C#数据结构系列】树和二叉树

    线性结构中的数据元素是一对一的关系,树形结构是一对多的非线性结构,非常类似于自然界中的树,数据元素之间既有分支关系,又有层次关系.树形结构在现实世界中广泛存在,如家族的家谱.一个单位的行政机构组织等都 ...

  2. "排序二叉树"之探幽

    /*怎么理解排序二叉树呢?在二叉树的基本定义上增加两个基本条件: (1)所有左子树的节点数值都小于此节点的数值: (2)所有右节点的数值都大于此节点的数值. */ 1 /*************** ...

  3. c++(排序二叉树)

    前面我们讲过双向链表的数据结构.每一个循环节点有两个指针,一个指向前面一个节点,一个指向后继节点,这样所有的节点像一颗颗珍珠一样被一根线穿在了一起.然而今天我们讨论的数据结构却有一点不同,它有三个节点 ...

  4. Java编程的逻辑 (42) - 排序二叉树

    本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http:/ ...

  5. 数据结构与算法系列研究五——树、二叉树、三叉树、平衡排序二叉树AVL

    树.二叉树.三叉树.平衡排序二叉树AVL 一.树的定义 树是计算机算法最重要的非线性结构.树中每个数据元素至多有一个直接前驱,但可以有多个直接后继.树是一种以分支关系定义的层次结构.    a.树是n ...

  6. javascript/js实现 排序二叉树数据结构 学习随笔

    二叉树是一种数据结构.其特点是: 1.由一系列节点组成,具有层级结构.每个节点的特性包含有节点值.关系指针.节点之间存在对应关系. 2.树中存在一个没有父节点的节点,叫做根节点.树的末尾存在一系列没有 ...

  7. 【数据结构&算法】11-树基础&二叉树遍历

    目录 前言 树的定义 树的存储结构 双亲表示法 孩子表示法 孩子兄弟表示法 二叉树 定义 特点 形态 特殊二叉树 斜树 满二叉树 完全二叉树 二叉树的性质 二叉树的存储结构 二叉树的顺序存储结构 二叉 ...

  8. c++(排序二叉树线索化)

    前面我们谈到了排序二叉树,还没有熟悉的同学可以看一下这个,二叉树基本操作.二叉树插入.二叉树删除1.删除2.删除3.但是排序二叉树也不是没有缺点,比如说,如果我们想在排序二叉树中删除一段数据的节点怎么 ...

  9. LeetCode:145_Binary Tree Postorder Traversal | 二叉树后序遍历 | Hard

    题目:Binary Tree Postorder Traversal 二叉树的后序遍历,题目要求是采用非递归的方式,这个在上数据结构的课时已经很清楚了,二叉树的非递归遍历不管采用何种方式,都需要用到栈 ...

随机推荐

  1. PHP入门-1

    基本数据类型: 1.整形 2.浮点型 3.字符串 4.布尔型 5.数组和对象 6.null 7.资源类型 8.伪类型 由于php是弱语言,所以他的数据类型不用自己来定义.定义一个数据类型,$name ...

  2. css3--:target选择器称为目标选择器

    :target选择器称为目标选择器,用来匹配文档(页面)的url的某个标志符的目标元素.我们先来上个例子,然后再做分析. 示例展示 点击链接显示隐藏的段落. HTML代码: <h2>< ...

  3. tcp的重传与超时

    TCP协议是一种面向连接的可靠的传输层协议,它保证了数据的可靠传输,对于一些出错,超时丢包等问题TCP设计的超时与重传机制. 其基本原理:在发送一个数据之后,就开启一个定时器,若是在这个时间内没有收到 ...

  4. Zabbix磁盘性能监控

    iostat统计磁盘信息的时候,使用的是/proc/diskstats ,cat /proc/diskstats显示如下 ram0 ram1 ram2 ram3 ram4 ram5 ram6 ram7 ...

  5. JDK 15 JAVA 15的新特性展望

    目录 JEP 371: Hidden Classes JEP 372: 删除 Nashorn JavaScript Engine JEP 377: 新的垃圾回收器ZGC正式上线了 JEP 378: T ...

  6. 怎么在java中创建一个自定义的collector

    目录 简介 Collector介绍 自定义Collector 总结 怎么在java中创建一个自定义的collector 简介 在之前的java collectors文章里面,我们讲到了stream的c ...

  7. JDK11的重要新特性

    文章目录 JDK11发布啦 Oracle不再提供JRE和Server JRE下载 删除部署工具 JavaFX不再包含在JDK中 删除Java EE和CORBA模块 JDK11发布啦 JDK11 在20 ...

  8. rabbitMQ本地安装(Mac版)

    一. 首先测试本机器是否安装wget命令 (可以通过wget www.baidu.com来测试,如果有响应则可直接进入步骤二,如果报错或者提示未安装wget则需要先安装wget) 1http://ft ...

  9. telnet 636端口不通

    今天发生了一件奇怪的事情,LDAP的636端口突然就不通了报错如下 [www@DC ~]$ telnet 10.219.90.173 636Trying10.219.90.173...Connecte ...

  10. postman(介绍)

    Postman 界面介绍 一. 安装后首次打开 postman,会提示你是否需要登录,登录的话可以云端保存你的收藏及历史记录,不登陆不影响使用.   二. 进入后就是如下图所示的界面了.看到这么多按钮 ...