nim博弈 LightOJ - 1253
主要是写一下nim博弈的理解,这个题有点奇怪,不知道为什么判断奇偶性,如果有大佬知道还请讲解一下.
//nim博弈
//a[0]~a[i] 异或结果为k 若k=0 则为平衡态 否则为非平衡态
//平衡态转化为非平衡态 :一定有 a[n]^k<a[n] a[0]^……a[n]^k……^a[i]=0
//二进制为什么能判断平衡态 并且转化 将每一对转化为二进制的小堆
/*,每个正整数都有对应的一个二进制数,
例如:57(10)à 111001(2) ,即:57(10)=25+24+23+20。
于是,我们可以认为每一堆硬币数由2的幂数的子堆组成。
这样,含有57枚硬币大堆就能看成是分别由数量为25、24、23、20的各个子堆组成。
如果每一种大小的子堆的个数都是偶数,我们就称Nim取子游戏是平衡的,
而对应位相加是偶数的称为平衡位,否则称为非平衡位。
7 0 1 1 1
9 1 0 0 1
12 1 1 0 0
15 1 1 1 1
找到 a[n]^k<a[n] 将a[n]转化为 a[n]^k 即为平衡态
*/
#include<stdio.h>
int main()
{
int n,t,a[120],z=1;
scanf("%d",&t);
while(t--)
{
int sum=0,flag=0;
scanf("%d",&n);
for(int i=0; i<n; i++)
{
scanf("%d",&a[i]);
if(a[i]!=1)
flag=1;
}
//printf("sum=%d\n",sum);
printf("Case %d:",z++);
if(flag)
{
for(int i=0; i<n; i++)
sum=sum^a[i];
if(sum==0)
printf(" Bob\n");
else
printf(" Alice\n");
}
else
{
if(n%2==1)
printf(" Bob\n");
else
printf(" Alice\n");
}
}
return 0;
}
nim博弈 LightOJ - 1253的更多相关文章
- LightOJ 1253 Misere NIM(反NIM博弈)
Alice and Bob are playing game of Misère Nim. Misère Nim is a game playing on k piles of stones, eac ...
- LightOJ - 1247 Matrix Game (Nim博弈)题解
题意: 给一个矩阵,每一次一个玩家可以从任意一行中选任意数量的格子并从中拿石头(但最后总数要大于等于1),问你谁赢 思路: 一开始以为只能一行拿一个... 将每一行石子数相加就转化为经典的Nim博弈 ...
- LightOJ 1186 Icreable Chess(Nim博弈)
You are given an n x n chess board. Only pawn is used in the 'Incredible Chess' and they can move fo ...
- HDU 2509 Nim博弈变形
1.HDU 2509 2.题意:n堆苹果,两个人轮流,每次从一堆中取连续的多个,至少取一个,最后取光者败. 3.总结:Nim博弈的变形,还是不知道怎么分析,,,,看了大牛的博客. 传送门 首先给出结 ...
- HDU 1907 Nim博弈变形
1.HDU 1907 2.题意:n堆糖,两人轮流,每次从任意一堆中至少取一个,最后取光者输. 3.总结:有点变形的Nim,还是不太明白,盗用一下学长的分析吧 传送门 分析:经典的Nim博弈的一点变形. ...
- zoj3591 Nim(Nim博弈)
ZOJ 3591 Nim(Nim博弈) 题目意思是说有n堆石子,Alice只能从中选出连续的几堆来玩Nim博弈,现在问Alice想要获胜有多少种方法(即有多少种选择方式). 方法是这样的,由于Nim博 ...
- hdu 1907 John&& hdu 2509 Be the Winner(基础nim博弈)
Problem Description Little John is playing very funny game with his younger brother. There is one bi ...
- 关于NIM博弈结论的证明
关于NIM博弈结论的证明 NIM博弈:有k(k>=1)堆数量不一定的物品(石子或豆粒…)两人轮流取,每次只能从一堆中取若干数量(小于等于这堆物品的数量)的物品,判定胜负的条件就是,最后一次取得人 ...
- HDU - 1850 Nim博弈
思路:可以对任意一堆牌进行操作,根据Nim博弈定理--所有堆的数量异或值为0就是P态,否则为N态,那么直接对某堆牌操作能让所有牌异或值为0即可,首先求得所有牌堆的异或值,然后枚举每一堆,用已经得到的异 ...
随机推荐
- 最强加密算法?AES加解密算法Matlab和Verilog实现
目录 背景 AES加密的几种模式 基本运算 AES加密原理 Matlab实现 Verilog实现 Testbench 此本文首发于公众号[两猿社],重点讲述了AES加密算法的加密模式和原理,用MATL ...
- 连接器巨头Molex莫仕大裁员,CEO更迭
序言:中美贸易战的大环境下,美国多方面限制对华出口电子科技,其中影响最大的莫过于限制芯片出口,中国本土芯片和电子产业也在蓬勃的发展.根据正能量电子了解连接器巨头MOLEX莫仕公司收入的1/3是来自于对 ...
- C++ 迷宫寻路问题
迷宫寻路应该是栈结构的一个非常经典的应用了, 最近看数据结构算法应用时看到了这个问题, 想起来在校求学时参加算法竞赛有遇到过相关问题, 感觉十分亲切, 在此求解并分享过程, 如有疏漏, 欢迎指正 问题 ...
- Java面试必问之Hashmap底层实现原理(JDK1.8)
1. 前言 上一篇从源码方面了解了JDK1.7中Hashmap的实现原理,可以看到其源码相对还是比较简单的.本篇笔者和大家一起学习下JDK1.8下Hashmap的实现.JDK1.8中对Hashmap做 ...
- Django报Warning错误 RuntimeWarning: DateTimeField Goods.create_at received a naive datetime (2019-07-31 23:05:58) while time zone support is active
报错和UTC(世界标准时间)有关,在settings.py 文件中设置 USE_TZ = False 警告错误不再报
- 1024程序员节最新福利之2018最全H5前端资料集
前言 有好久没有写博客了,主要这段时间都沉迷学习无法自拔了,哈哈.自吹一波. 前两天不是1024节吗,所以就有很多福利出现了,当然每个人能都获得的信息都有所不同,这就是所谓的信息差.秉着好东西需要分享 ...
- 不一样的ZTree,权限树.js插件
每一个有趣的创新,都源于苦逼的生活. 在最近的工作中,遇到一个做权限管理筛选的需求.简单总结需求:1展示一个组织中的组织结构2通过点击组织结构中的任意一个节点可以向上向下查询对应的组织结构 如果你不想 ...
- yuchuan_Linux_C 编程之七系统IO函数
一.整体大纲 二. 系统IO函数 1. 一些概念 文件描述符 PCB C库函的IO缓冲区 1) 文件描述符 int 类型 一个进程最多 ...
- 硬核数据结构,让你从B树理解到B+树
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是周五分布式系统的第八篇文章,核心内容是B+树的原理. 今天的文章是上周B树的延伸,所以新关注的或者是有所遗忘的同学建议先从下方链接回顾 ...
- C#委托和事件的简单实例
委托 C#里这个委托我的理解是可以看成是一个方法模板的类型.(不过并没有找到相关的理解 比如有几个返回值,参数列表类型相同的方法,就能用同个模板类型来表示,然后实例化一个委托类型就绑定上一个或多个方法 ...