nim博弈 LightOJ - 1253
主要是写一下nim博弈的理解,这个题有点奇怪,不知道为什么判断奇偶性,如果有大佬知道还请讲解一下.
//nim博弈
//a[0]~a[i] 异或结果为k 若k=0 则为平衡态 否则为非平衡态
//平衡态转化为非平衡态 :一定有 a[n]^k<a[n] a[0]^……a[n]^k……^a[i]=0
//二进制为什么能判断平衡态 并且转化 将每一对转化为二进制的小堆
/*,每个正整数都有对应的一个二进制数,
例如:57(10)à 111001(2) ,即:57(10)=25+24+23+20。
于是,我们可以认为每一堆硬币数由2的幂数的子堆组成。
这样,含有57枚硬币大堆就能看成是分别由数量为25、24、23、20的各个子堆组成。
如果每一种大小的子堆的个数都是偶数,我们就称Nim取子游戏是平衡的,
而对应位相加是偶数的称为平衡位,否则称为非平衡位。
7 0 1 1 1
9 1 0 0 1
12 1 1 0 0
15 1 1 1 1
找到 a[n]^k<a[n] 将a[n]转化为 a[n]^k 即为平衡态
*/
#include<stdio.h>
int main()
{
int n,t,a[120],z=1;
scanf("%d",&t);
while(t--)
{
int sum=0,flag=0;
scanf("%d",&n);
for(int i=0; i<n; i++)
{
scanf("%d",&a[i]);
if(a[i]!=1)
flag=1;
}
//printf("sum=%d\n",sum);
printf("Case %d:",z++);
if(flag)
{
for(int i=0; i<n; i++)
sum=sum^a[i];
if(sum==0)
printf(" Bob\n");
else
printf(" Alice\n");
}
else
{
if(n%2==1)
printf(" Bob\n");
else
printf(" Alice\n");
}
}
return 0;
}
nim博弈 LightOJ - 1253的更多相关文章
- LightOJ 1253 Misere NIM(反NIM博弈)
Alice and Bob are playing game of Misère Nim. Misère Nim is a game playing on k piles of stones, eac ...
- LightOJ - 1247 Matrix Game (Nim博弈)题解
题意: 给一个矩阵,每一次一个玩家可以从任意一行中选任意数量的格子并从中拿石头(但最后总数要大于等于1),问你谁赢 思路: 一开始以为只能一行拿一个... 将每一行石子数相加就转化为经典的Nim博弈 ...
- LightOJ 1186 Icreable Chess(Nim博弈)
You are given an n x n chess board. Only pawn is used in the 'Incredible Chess' and they can move fo ...
- HDU 2509 Nim博弈变形
1.HDU 2509 2.题意:n堆苹果,两个人轮流,每次从一堆中取连续的多个,至少取一个,最后取光者败. 3.总结:Nim博弈的变形,还是不知道怎么分析,,,,看了大牛的博客. 传送门 首先给出结 ...
- HDU 1907 Nim博弈变形
1.HDU 1907 2.题意:n堆糖,两人轮流,每次从任意一堆中至少取一个,最后取光者输. 3.总结:有点变形的Nim,还是不太明白,盗用一下学长的分析吧 传送门 分析:经典的Nim博弈的一点变形. ...
- zoj3591 Nim(Nim博弈)
ZOJ 3591 Nim(Nim博弈) 题目意思是说有n堆石子,Alice只能从中选出连续的几堆来玩Nim博弈,现在问Alice想要获胜有多少种方法(即有多少种选择方式). 方法是这样的,由于Nim博 ...
- hdu 1907 John&& hdu 2509 Be the Winner(基础nim博弈)
Problem Description Little John is playing very funny game with his younger brother. There is one bi ...
- 关于NIM博弈结论的证明
关于NIM博弈结论的证明 NIM博弈:有k(k>=1)堆数量不一定的物品(石子或豆粒…)两人轮流取,每次只能从一堆中取若干数量(小于等于这堆物品的数量)的物品,判定胜负的条件就是,最后一次取得人 ...
- HDU - 1850 Nim博弈
思路:可以对任意一堆牌进行操作,根据Nim博弈定理--所有堆的数量异或值为0就是P态,否则为N态,那么直接对某堆牌操作能让所有牌异或值为0即可,首先求得所有牌堆的异或值,然后枚举每一堆,用已经得到的异 ...
随机推荐
- ndarray数组的索引和切片
索引:获取数组中特定位置元素的过程 切片:获取数组元素子集的过程 import numpy as np 一维数组 一维数组的索引和切片与python中的列表类似 索引:若元素个数为n,则索引下标可表示 ...
- 数据结构 1 线性表详解 链表、 栈 、 队列 结合JAVA 详解
前言 其实在学习数据结构之前,我也是从来都没了解过这门课,但是随着工作的慢慢深入,之前学习的东西实在是不够用,并且太皮毛了.太浅,只是懂得一些浅层的,我知道这个东西怎么用,但是要优化.或者是解析,就不 ...
- python 软件目录规范
软件目录结构规范 软件开发规范 一.为什么要设计好目录结构? 1.可读性高: 不熟悉这个项目的代码的人,一眼就能看懂目录结构,知道程序启动脚本是哪个,测试目录在哪儿,配置文件在哪儿等等.从而非常快 ...
- JavaScript sort() 对json进行排序(数组)
function up(x,y){//升序 return x[val.prop] - y[val.prop] } function down(x,y){//降序 return y[val.prop] ...
- 前端ps中常用的操作
昨天,ui给了个psd图,让写成网页.额,要自己切图.很久之前,操作的还凑乎.但是,好久了,都忘了.所以,打算自己记个笔记,方便以后查看. 首先,打开ps就先来设置一下ps的单位啦点击最上面的一行的编 ...
- 阿里云上docker部署nginx实现反向代理
简介 需要从镜像仓库找到所需要的nginx版本pull下来.(地址:https://hub.docker.com/) 1.docker pull nginx 1.挂载目录 1.1 获取nginx. ...
- java后台生成并下载二维码
这个功能在项目开发中是很基础的,平时用到的也很多,这里简单记录一下,以便以后使用的时候参考 前提业务要求:前台页面展示数据,有下载按钮,点击下载,下载对应数据的二维码. 首先,在pom.xml文件中添 ...
- vue用template还是JSX?
各自特点 template 模板语法(HTML的扩展) 数据绑定使用Mustache语法(双大括号) <span>{{title}}<span> JSX JavaScript的 ...
- 免ROOT卸载手机自带软件详细教程
一.准备条件 1.电脑一台 2.手机一部 3.WiFi 二.下载所需资源 微信扫码进入搜索,选择安卓软件卸载工具 根据图中提示,按照自己的系统进行下载 三.下载完后解压(以Windows为例),解压后 ...
- RocketMQ-2.RocketMQ的负载均衡
目录 RocketMQ的负载均衡 producer对MessageQueue的负载均衡 producer负载均衡 系统计算路由MessageQueue 自定义路由MessageQueue Consum ...