python图像处理常用方法
在线标注网站
https://gitlab.com/vgg/via
http://www.robots.ox.ac.uk/~vgg/software/via/via.html
数组与图像互转
from matplotlib import image
image.imsave('/xxx/%d.jpg'%d, array, cmap='gray') #数组转灰度图,jpg为三个通道数值一样
arr = image.imread("")
灰度图增强对比度
from PIL import Image
from PIL import ImageEnhance
img = Image.open('/xxx/xx.jpg')
img.show()
enh_con = ImageEnhance.Contrast(img)
contrast = 1.5 #增强的倍数
img_contrasted = enh_con.enhance(contrast)
img_contrasted.show()
处理标注网站的csv文件
import csv
import json
import numpy as np
def readcsv(filename):
list1 = []
with open(filename)as f:
csv_reader = csv.reader(f)
for row in csv_reader:
x,y,w,h = readjson(row[5])
list1.append([row[0], x, y, w, h])
arr = np.array(list1)
return arr
def readjson(jsonstr):
jsontemp = json.loads(jsonstr)
x,y,w,h = jsontemp["x"], jsontemp["y"], jsontemp["width"], jsontemp["height"]
return x,y,w,h
if __name__ == '__main__':
arr = readcsv('./ann/ann_test.csv')
print(arr)
图像resize,等比缩放,旁边加黑边:
import cv2
import numpy as np
from glob import glob
import os
def training_transform(height, width, output_height, output_width):
# https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/warp_affine/warp_affine.html
height_scale, width_scale = output_height / height, output_width / width
scale = min(height_scale, width_scale)
resize_height, resize_width = round(height * scale), round(width * scale)
pad_top = (output_height - resize_height) // 2
pad_left = (output_width - resize_width) // 2
A = np.float32([[scale, 0.0], [0.0, scale]])
B = np.float32([[pad_left], [pad_top]])
M = np.hstack([A, B])
return M, output_height, output_width
def testing_transform(height, width, max_stride):
h_pad, w_pad = round(height / max_stride + 0.51) * max_stride, round(width / max_stride + 0.51) * max_stride
pad_left = (w_pad - width) // 2
pad_top = (h_pad - height) // 2
A = np.eye(2, dtype='float32')
B = np.float32([[pad_left], [pad_top]])
M = np.hstack([A, B])
return M, h_pad, w_pad
def invert_transform(M):
# T = A @ x + B => x = A_inv @ (T - B) = A_inv @ T + (-A_inv @ B)
A_inv = np.float32([[1. / M[0, 0], 0.0], [0.0, 1. / M[1, 1]]])
B_inv = -A_inv @ M[:, 2:3]
M_inv = np.hstack([A_inv, B_inv])
return M_inv
def affine_transform_coords(coords, M):
A, B = M[:2, :2], M[:2, 2:3]
transformed_coords = A @ coords + B
return transformed_coords
class LetterboxTransformer:
def __init__(self, height=None, width=None, mode='training', max_stride=128):
"""Resize the input images. For `mode='training'` the resolution is fixed to `height` x `width`.
The resolution is changed but the aspect ratio is kept.
In `mode='testing'` the input is padded to the next bigger multiple of `max_stride` of the network.
The orginal resolutions is thus kept."""
self.height = height
self.width = width
self.mode = mode
self.max_stride = max_stride
self.M = None
self.M_inv = None
def __call__(self, image):
h, w = image.shape[:2]
if self.mode == 'training':
M, h_out, w_out = training_transform(h, w, self.height, self.width)
elif self.mode == 'testing':
M, h_out, w_out = testing_transform(h, w, self.max_stride)
# https://answers.opencv.org/question/33516/cv2warpaffine-results-in-an-image-shifted-by-05-pixel
# This is different from `cv2.resize(image, (resize_width, resize_height))` & pad
letterbox = cv2.warpAffine(image, M, (w_out, h_out))
self.M = M
self.M_inv = invert_transform(M)
return letterbox
def correct_box(self, x1, y1, x2, y2):
coords = np.float32([[x1, x2], [y1, y2]])
coords = affine_transform_coords(coords, self.M_inv)
x1, y1, x2, y2 = coords[0, 0], coords[1, 0], coords[0, 1], coords[1, 1]
return x1, y1, x2, y2
def correct_coords(self, coords):
coords = affine_transform_coords(coords, self.M_inv)
return coords
#查看效果
from matplotlib import pyplot as plt
from matplotlib import image
fn = '/home/hxybs/centerNet/Centernet-Tensorflow2/data/val2017/000000000885.jpg'
letterbox_transformer = LetterboxTransformer(256, 556)
img = cv2.imread(fn)
pimg = letterbox_transformer(img)
plt.figure()
plt.imshow(img)
plt.figure()
plt.imshow(pimg)
plt.show()
效果:
计算图片数据集的均值方差
保证所有的图片都是统一尺寸
import os
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
from imageio import imread
filepath = r'/home/xxx/images' # 数据集目录
pathDir = os.listdir(filepath)
R_channel = 0
G_channel = 0
B_channel = 0
for idx in range(len(pathDir)):
filename = pathDir[idx]
img = imread(os.path.join(filepath, filename)) / 255.0
R_channel = R_channel + np.sum(img[:, :, 0])
G_channel = G_channel + np.sum(img[:, :, 1])
B_channel = B_channel + np.sum(img[:, :, 2])
num = len(pathDir) * 512 * 512 # 这里(512,512)是每幅图片的大小,所有图片尺寸都一样
R_mean = R_channel / num
G_mean = G_channel / num
B_mean = B_channel / num
R_channel = 0
G_channel = 0
B_channel = 0
for idx in range(len(pathDir)):
filename = pathDir[idx]
img = imread(os.path.join(filepath, filename)) / 255.0
R_channel = R_channel + np.sum((img[:, :, 0] - R_mean) ** 2)
G_channel = G_channel + np.sum((img[:, :, 1] - G_mean) ** 2)
B_channel = B_channel + np.sum((img[:, :, 2] - B_mean) ** 2)
R_var = np.sqrt(R_channel / num)
G_var = np.sqrt(G_channel / num)
B_var = np.sqrt(B_channel / num)
print("R_mean is %f, G_mean is %f, B_mean is %f" % (R_mean, G_mean, B_mean))
print("R_var is %f, G_var is %f, B_var is %f" % (R_var, G_var, B_var))
python图像处理常用方法的更多相关文章
- Python图像处理库:Pillow 初级教程
Python图像处理库:Pillow 初级教程 2014-09-14 翻译 http://pillow.readthedocs.org/en/latest/handbook/tutorial.html ...
- Python图像处理之验证码识别
在上一篇博客Python图像处理之图片文字识别(OCR)中我们介绍了在Python中如何利用Tesseract软件来识别图片中的英文与中文,本文将具体介绍如何在Python中利用Tesseract ...
- 【python图像处理】图像的缩放、旋转与翻转
[python图像处理]图像的缩放.旋转与翻转 图像的几何变换,如缩放.旋转和翻转等,在图像处理中扮演着重要的角色,python中的Image类分别提供了这些操作的接口函数,下面进行逐一介绍. 1.图 ...
- Python图像处理库(1)
转自:http://www.ituring.com.cn/tupubarticle/2024 第 1 章 基本的图像操作和处理 本章讲解操作和处理图像的基础知识,将通过大量示例介绍处理图像所需的 Py ...
- Python图像处理库:PIL中Image,ImageDraw等基本模块介绍
Python图像处理库:PIL中Image,ImageDraw等基本模块介绍 标签: 图像处理PILPYTHON 2016-08-19 10:58 461人阅读 评论(0) 收藏 举报 分类: 其他 ...
- Python图像处理库PIL中图像格式转换(一)
在数字图像处理中,针对不同的图像格式有其特定的处理算法. 所以,在做图像处理之前,我们须要考虑清楚自己要基于哪种格式的图像进行算法设计及事实上现.本文基于这个需求.使用python中的图像处理库PIL ...
- python 图像处理中二值化方法归纳总结
python图像处理二值化方法 1. opencv 简单阈值 cv2.threshold 2. opencv 自适应阈值 cv2.adaptiveThreshold 3. Otsu's 二值化 例子: ...
- python图像处理:一福变五福
快过年了,各种互联网产品都出来撒红包.某宝一年一度的“集五福活动”更是成为每年的必备活动之一. 虽然到最后每人大概也就分个两块钱,但作为一个全民话题,大多数人还是愿意凑凑热闹. 毕竟对于如今生活在大城 ...
- Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像
前文传送门: 「Python 图像处理 OpenCV (1):入门」 普通操作 1. 读取像素 读取像素可以通过行坐标和列坐标来进行访问,灰度图像直接返回灰度值,彩色图像则返回B.G.R三个分量. 需 ...
随机推荐
- webpack散记---提取公共代码
(1)作用: 减少代码冗余 提高加载速度 (2)来源 commonsChunkPlugin webpack.optimize.CommonsChunkPlugin (3)配置 { plugins:[ ...
- P1031 查验身份证
转跳点:
- 每天一点点之vue框架开发 - 使用vue-router路由
1.安装路由(安装过的跳过此步) // 进入项目根目录 cd frontend // 安装 npm install vue-router --save-dev 2.在入口文件main.js中引入路由 ...
- POJ 1039:Pipe 计算几何
Pipe Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9773 Accepted: 2984 Description ...
- Vue中 几个常用的命名规范
1,组件名 官方推荐的组件名是 每个单词首字母大写(PascalCase) 或者 全小写用 - 连接(kebab-case) . 在DOM中使用的时候, 改为全小写, 单词之间用 - 连接. Vue. ...
- jquery获取高度
分为以下几种: .height() -获取匹配元素集合中的第一个元素的当前计算高度值 或 设置每一个匹配元素的高度值. -.css('height') 和 .height()之间的区别是后者返回一个没 ...
- 64.Python中ORM查询条件:in和关联模型
定义模型的models.py文件中示例代码如下: from django.db import models class Category(models.Model): name = models.Ch ...
- 轻量级UILabel分段点击扩展更新啦
http://www.code4app.com/thread-31445-1-1.html Tag: 项目介绍: YBAttributeTextTapAction 一行代码添加文本点击事件 效果图 S ...
- Aizu 2155 Magic Slayer 背包DP
这是上上次对抗赛的题目了 其实现在发现整个代码从头到尾,都是用了背包,怪我们背包没深入学好. 比赛的时候,聪哥提出的一种思路是,预处理一下,背包出 ALL攻击 和 single攻击的 血量对应的最小花 ...
- c# 用户控件,usercontrol,自定义控件属性
1.C#用户控件的使用 2.拖动添加:画面上如需多个usercontrol,添加TableLayoutPanel,然后在工具箱中找到usercontrol,拖到相应框中 3.代码添加:主窗口中有多个T ...