SciKit-Learn 可视化数据:主成分分析(PCA)
保留版权所有,转帖注明出处
章节
主成分分析(PCA)是一种常用于减少大数据集维数的降维方法,把大变量集转换为仍包含大变量集中大部分信息的较小变量集。
减少数据集的变量数量,自然是以牺牲精度为代价的,降维的好处是以略低的精度换取简便。因为较小的数据集更易于探索和可视化,并且使机器学习算法更容易和更快地分析数据,而不需处理无关变量。
总而言之,主成分分析(PCA)的概念很简单——减少数据集的变量数量,同时保留尽可能多的信息。
使用scikit-learn,可以很容易地对数据进行主成分分析:
# 创建一个随机的PCA模型,该模型包含两个组件
randomized_pca = PCA(n_components=2, svd_solver='randomized')
# 拟合数据并将其转换为模型
reduced_data_rpca = randomized_pca.fit_transform(digits.data)
# 创建一个常规的PCA模型
pca = PCA(n_components=2)
# 拟合数据并将其转换为模型
reduced_data_pca = pca.fit_transform(digits.data)
# 检查形状
reduced_data_pca.shape
# 打印数据
print(reduced_data_rpca)
print(reduced_data_pca)
输出
[[ -1.25946586 21.27488217]
[ 7.95761214 -20.76870381]
[ 6.99192224 -9.95598251]
...
[ 10.80128338 -6.96025076]
[ -4.87209834 12.42395157]
[ -0.34439091 6.36555458]]
[[ -1.2594653 21.27488157]
[ 7.95761471 -20.76871125]
[ 6.99191791 -9.95597343]
...
[ 10.80128002 -6.96024527]
[ -4.87209081 12.42395739]
[ -0.34439546 6.36556369]]
随机的PCA模型在维数较多时性能更好。可以比较常规PCA模型与随机PCA模型的结果,看看有什么不同。
告诉模型保留两个组件,是为了确保有二维数据可用来绘图。
现在可以绘制一个散点图来可视化数据:
colors = ['black', 'blue', 'purple', 'yellow', 'white', 'red', 'lime', 'cyan', 'orange', 'gray']
# 根据主成分分析结果绘制散点图
for i in range(len(colors)):
x = reduced_data_rpca[:, 0][digits.target == i]
y = reduced_data_rpca[:, 1][digits.target == i]
plt.scatter(x, y, c=colors[i])
# 设置图例,0-9用不同颜色表示
plt.legend(digits.target_names, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
# 设置坐标标签
plt.xlabel('First Principal Component')
plt.ylabel('Second Principal Component')
# 设置标题
plt.title("PCA Scatter Plot")
# 显示图形
plt.show()
显示:
SciKit-Learn 可视化数据:主成分分析(PCA)的更多相关文章
- SciKit-Learn 使用matplotlib可视化数据
章节 SciKit-Learn 加载数据集 SciKit-Learn 数据集基本信息 SciKit-Learn 使用matplotlib可视化数据 SciKit-Learn 可视化数据:主成分分析(P ...
- 主成分分析PCA数据降维原理及python应用(葡萄酒案例分析)
目录 主成分分析(PCA)——以葡萄酒数据集分类为例 1.认识PCA (1)简介 (2)方法步骤 2.提取主成分 3.主成分方差可视化 4.特征变换 5.数据分类结果 6.完整代码 总结: 1.认识P ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- 一步步教你轻松学主成分分析PCA降维算法
一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简 ...
- 机器学习课程-第8周-降维(Dimensionality Reduction)—主成分分析(PCA)
1. 动机一:数据压缩 第二种类型的 无监督学习问题,称为 降维.有几个不同的的原因使你可能想要做降维.一是数据压缩,数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,但它也让我们加快 ...
- 运用sklearn进行主成分分析(PCA)代码实现
基于sklearn的主成分分析代码实现 一.前言及回顾 二.sklearn的PCA类介绍 三.分类结果区域可视化函数 四.10行代码完成葡萄酒数据集分类 五.完整代码 六.总结 基于sklearn的主 ...
- 深度学习入门教程UFLDL学习实验笔记三:主成分分析PCA与白化whitening
主成分分析与白化是在做深度学习训练时最常见的两种预处理的方法,主成分分析是一种我们用的很多的降维的一种手段,通过PCA降维,我们能够有效的降低数据的维度,加快运算速度.而白化就是为了使得每个特征能有同 ...
- 线性判别分析(LDA), 主成分分析(PCA)及其推导【转】
前言: 如果学习分类算法,最好从线性的入手,线性分类器最简单的就是LDA,它可以看做是简化版的SVM,如果想理解SVM这种分类器,那理解LDA就是很有必要的了. 谈到LDA,就不得不谈谈PCA,PCA ...
随机推荐
- mysql 提取 schema,table,column names
参考: https://dzone.com/articles/how-use-linkedin-market-your 表空间信息 https://coderanch.com/t/300498/dat ...
- c++实现线性表中的顺序表(数据结构课程作业)
一.题目简介 实现顺序表的创建.初始化.赋值.插入.删除.按数据查找元素位置.按元素位置查找数据.清空.删除 的操作,以上操作用可用菜单选项完成 二.源程序代码 #include<iostrea ...
- luogu P2762 太空飞行计划问题
好像是最大权闭合图,也就是最大流最小割啦,找出最大流的路径输出,这题如何建模呢,一样的先设源点和汇点,源点向每个计划连capacity为赞助数的边,每个计划连相应装置capacity为无穷的边,每个装 ...
- AOP五种执行时机
动态代理四种增强方式 先创建一个service类 package com.zzj.calculatar.service; import org.springframework.stereotype.S ...
- 一 CRM 注册功能实现
前端:登陆页面按钮跳转到注册页面 dao: 配置连接池 配置session工厂,Hibernate核心配置,映射 配置UserDao,注入session工厂 UserDao:继承HibernateD ...
- python 中常见的异常类型汇总
异常名称 描述 BaseException 所有异常的基类 SystemExit 解释器请求退出 KeyboardInterrupt 用户中断执行(通常是输入^C) Exception 常规错误的基类 ...
- Google宣布安全奖励项目(GPSRP)覆盖上亿的 Android 应用程序
自 2010 年推出除虫赏金项目以来,谷歌已经向安全研究人员支付了超过 1500 万美元的奖励.今天,这家科技巨头宣布进一步拓展 Google Play 安全奖励项目(GPSRP)的范围,以覆盖上亿的 ...
- 单片机ADC检测4-20mA电路,以及计算方法
单片机ADC检测4-20mA电路,以及计算方法 转载:https://www.hongchangzidonghua.com/?id=24 1,手里有一个4-20mA输出的压力传感器,假设测量范围是0M ...
- hadoop-mapreduce的官方示例的测试执行方法
1.根据给出的精度参数计算 pi : hadoop jar /export/servers/hadoop-2.6.0-cdh5.14.0/share/hadoop/mapreduce/hadoop-m ...
- 空中网4k/5k月薪挑选大四实习生的线程题
空中网4k/5k月薪挑选大四实习生的线程题 两年前,我们一个大四的学员去应聘空中网的实习生职位,空中网只给他出了三道线程题,拿回家做两天后再去给经理讲解,如果前两题做好了给4k月薪,第三道题也做出来的 ...