总计分为三个步骤

  一、捕获人脸照片

  二、对捕获的照片进行训练

  三、加载训练的数据,识别

使用python3.6.8,opencv,numpy,pil

第一步:通过笔记本前置摄像头捕获脸部图片

  将捕获的照片存在picData文件夹中,并格式为user.id.num.jpg。id在识别时和人名数组一一对应。

import numpy as np
import cv2 cap = cv2.VideoCapture(0)
face_cascade = cv2.CascadeClassifier("data/haarcascade_frontalface_default.xml")
sampleNum = 0
Id = input('请输入id:') while True:
ret, img = cap.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in faces:
img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
# 增加例子数
sampleNum = sampleNum + 1 # 把照片保存到数据集文件夹
cv2.imwrite(
"picData/user." + str(Id) + "." + str(sampleNum) + ".jpg",
gray[y : y + h, x : x + w],
)
cv2.imshow("img", img)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
if sampleNum == 3000:
break cap.release()
cv2.destroyAllWindows()

第二步:训练数据

  将训练好的数据存储在data/trainner.yml中

import cv2
import os
import numpy as np
from PIL import Image recognizer = cv2.face.LBPHFaceRecognizer_create()
detector = cv2.CascadeClassifier("data/haarcascade_frontalface_default.xml") def get_images_and_labels(path):
image_paths = [os.path.join(path, f) for f in os.listdir(path)]
face_samples = []
ids = [] for image_path in image_paths:
image = Image.open(image_path).convert("L")
image_np = np.array(image, "uint8")
if os.path.split(image_path)[-1].split(".")[-1] != "jpg":
continue
image_id = int(os.path.split(image_path)[-1].split(".")[1])
faces = detector.detectMultiScale(image_np)
for (x, y, w, h) in faces:
face_samples.append(image_np[y : y + h, x : x + w])
ids.append(image_id) return face_samples, ids faces, Ids = get_images_and_labels("picData")
recognizer.train(faces, np.array(Ids))
recognizer.save("data/trainner.yml")

第三步:人脸识别

  加载第二步训练的数据,定义需要识别的人名。

import cv2

recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('data/trainner.yml')
faceCascade = cv2.CascadeClassifier("data/haarcascade_frontalface_default.xml")
font = cv2.FONT_HERSHEY_SIMPLEX idnum = 0 names = ['kAng'] cam = cv2.VideoCapture(0)
minW = 0.1*cam.get(3)
minH = 0.1*cam.get(4) while True:
ret, img = cam.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.2,
minNeighbors=5,
minSize=(int(minW), int(minH))
) for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
idnum, confidence = recognizer.predict(gray[y:y+h, x:x+w]) if confidence >50:
idnum = names[idnum]
confidence = "{0}%".format(round(confidence))
else:
idnum = "unknown"
confidence = "{0}%".format(round(confidence)) cv2.putText(img, str(idnum), (x+5, y-5), font, 1, (0, 0, 255), 1)
cv2.putText(img, str(confidence), (x+5, y+h-5), font, 1, (255, 255, 0), 1) cv2.imshow('camera', img)
k = cv2.waitKey(10)
if k == 27:
break cam.release()
cv2.destroyAllWindows()

  

 效果图:

参考:https://segmentfault.com/a/1190000014943784(详细解析)

opencv python训练人脸识别的更多相关文章

  1. 手把手教你如何用 OpenCV + Python 实现人脸识别

    下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like 通俗的来讲,就是作为人脸特 ...

  2. 使用OpenCV和Python进行人脸识别

    介绍 人脸识别是什么?或识别是什么?当你看到一个苹果时,你的大脑会立刻告诉你这是一个苹果.在这个过程中,你的大脑告诉你这是一个苹果水果,用简单的语言来说就是识别.那么什么是人脸识别呢?我肯定你猜对了. ...

  3. OpenCV + python 实现人脸检测(基于照片和视频进行检测)

    OpenCV + python 实现人脸检测(基于照片和视频进行检测) Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征 ...

  4. 【从零学习openCV】IOS7人脸识别实战

    前言 接着上篇<IOS7下的人脸检測>,我们顺藤摸瓜的学习怎样在IOS7下用openCV的进行人脸识别,实际上非常easy,因为人脸检測部分已经完毕,剩下的无非调用openCV的方法对採集 ...

  5. 基于Opencv快速实现人脸识别(完整版)

    无耻收藏网页链接: 基于OpenCV快速实现人脸识别:https://blog.csdn.net/beyond9305/article/details/92844258 基于Opencv快速实现人脸识 ...

  6. Opencv摄像头实时人脸识别

    Introduction 网上存在很多人脸识别的文章,这篇文章是我的一个作业,重在通过摄像头实时采集人脸信息,进行人脸检测和人脸识别,并将识别结果显示在左上角. 利用 OpenCV 实现一个实时的人脸 ...

  7. 写个神经网络,让她认得我`(๑•ᴗ•๑)(Tensorflow,opencv,dlib,cnn,人脸识别)

    训练一个神经网络 能让她认得我 阅读原文 这段时间正在学习tensorflow的卷积神经网络部分,为了对卷积神经网络能够有一个更深的了解,自己动手实现一个例程是比较好的方式,所以就选了一个这样比较有点 ...

  8. 手把手教你如何用 OpenCV + Python 实现人脸检测

    配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like Haar-like百科释义.通俗的来讲 ...

  9. AI人工智能之基于OpenCV+face_recognition实现人脸识别

    因近期公司项目需求,需要从监控视频里识别出人脸信息.OpenCV非常庞大,其中官方提供的人脸模型分类器也可以满足基本的人脸识别,当然我们也可以训练自己的人脸模型数据,但是从精确度和专业程度上讲Open ...

随机推荐

  1. runas的替代品CPAU使用

    runas替代软件CPAU 在windows系统下,想要实现某个程序不论何时都以指定的用户身份登录,因此找到了CPAU这个软件 cpau官方网站:https://www.joeware.net/fre ...

  2. Mini_Linux需要搭的环境

    1.bash:ifconfig:command not found sudo yum install -y net-tools 2.如果Linux系统是通过复制得到  需要更改hostname vi ...

  3. 【剑指Offer面试编程题】题目1386:旋转数组的最小数字--九度OJ

    题目描述: 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转.输入一个递增排序的数组的一个旋转,输出旋转数组的最小元素.例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转 ...

  4. 为何以及如何学Linux系统?

    在当今的社会中,linux用处实在是太过广泛了.现在用在服务器和嵌入式上的Linux发行版本数不胜数,桌面上linux只占1%的比例,但这不代表linux比windows和mac 做得差,实际上桌面系 ...

  5. KVM——虚拟化

    KVM——虚拟化   虚拟化是指通过虚拟化技术将一台计算机虚拟为多台逻辑计算机.在一台计算机上同时运行多个逻辑计算机,每个逻辑计算机可运行不同的操作系统,并且应用程序都可以在相互独立的空间内运行而互相 ...

  6. BSD socket编程学习

    1.socket简介 BSD是实现TCP/IP协议通信的软件系统,socket是应用编程接口,为app提供使用TCP/IP协议通信的接口. 网络层IP提供点到点服务(IP地址标识),传输层TCP和UD ...

  7. dateDiff 用法

    SELECT DATEDIFF(yy,'2018-3-10 16:40:00',getdate())SELECT DATEDIFF(mm,'2018-3-10 16:40:00',getdate()) ...

  8. linux问题故障

    分析问题的方法论 What-现象是什么样的 When-什么时候发生 Why-为什么会发生 Where-哪个地方发生的问 How much-耗费了多少资源 How to do-怎么解决问题 4. cpu ...

  9. fiddler抓取URL之过滤设置

    Fiddler是强大的抓包工具,它的原理是以web代理服务器的形式进行工作的,使用的代理地址是:127.0.0.1,端口默认为8888,我们也可以通过设置进行修改. 只要是开启了fiddler,我们的 ...

  10. 08 SSM整合案例(企业权限管理系统):07.订单操作

    04.AdminLTE的基本介绍 05.SSM整合案例的基本介绍 06.产品操作 07.订单操作 08.用户操作 09.权限控制 10.权限关联与控制 11.AOP日志 07.订单操作 SSM订单操作 ...