opencv python训练人脸识别
总计分为三个步骤
一、捕获人脸照片
二、对捕获的照片进行训练
三、加载训练的数据,识别
使用python3.6.8,opencv,numpy,pil
第一步:通过笔记本前置摄像头捕获脸部图片
将捕获的照片存在picData文件夹中,并格式为user.id.num.jpg。id在识别时和人名数组一一对应。
import numpy as np
import cv2 cap = cv2.VideoCapture(0)
face_cascade = cv2.CascadeClassifier("data/haarcascade_frontalface_default.xml")
sampleNum = 0
Id = input('请输入id:') while True:
ret, img = cap.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in faces:
img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
# 增加例子数
sampleNum = sampleNum + 1 # 把照片保存到数据集文件夹
cv2.imwrite(
"picData/user." + str(Id) + "." + str(sampleNum) + ".jpg",
gray[y : y + h, x : x + w],
)
cv2.imshow("img", img)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
if sampleNum == 3000:
break cap.release()
cv2.destroyAllWindows()
第二步:训练数据
将训练好的数据存储在data/trainner.yml中
import cv2
import os
import numpy as np
from PIL import Image recognizer = cv2.face.LBPHFaceRecognizer_create()
detector = cv2.CascadeClassifier("data/haarcascade_frontalface_default.xml") def get_images_and_labels(path):
image_paths = [os.path.join(path, f) for f in os.listdir(path)]
face_samples = []
ids = [] for image_path in image_paths:
image = Image.open(image_path).convert("L")
image_np = np.array(image, "uint8")
if os.path.split(image_path)[-1].split(".")[-1] != "jpg":
continue
image_id = int(os.path.split(image_path)[-1].split(".")[1])
faces = detector.detectMultiScale(image_np)
for (x, y, w, h) in faces:
face_samples.append(image_np[y : y + h, x : x + w])
ids.append(image_id) return face_samples, ids faces, Ids = get_images_and_labels("picData")
recognizer.train(faces, np.array(Ids))
recognizer.save("data/trainner.yml")
第三步:人脸识别
加载第二步训练的数据,定义需要识别的人名。
import cv2 recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('data/trainner.yml')
faceCascade = cv2.CascadeClassifier("data/haarcascade_frontalface_default.xml")
font = cv2.FONT_HERSHEY_SIMPLEX idnum = 0 names = ['kAng'] cam = cv2.VideoCapture(0)
minW = 0.1*cam.get(3)
minH = 0.1*cam.get(4) while True:
ret, img = cam.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.2,
minNeighbors=5,
minSize=(int(minW), int(minH))
) for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
idnum, confidence = recognizer.predict(gray[y:y+h, x:x+w]) if confidence >50:
idnum = names[idnum]
confidence = "{0}%".format(round(confidence))
else:
idnum = "unknown"
confidence = "{0}%".format(round(confidence)) cv2.putText(img, str(idnum), (x+5, y-5), font, 1, (0, 0, 255), 1)
cv2.putText(img, str(confidence), (x+5, y+h-5), font, 1, (255, 255, 0), 1) cv2.imshow('camera', img)
k = cv2.waitKey(10)
if k == 27:
break cam.release()
cv2.destroyAllWindows()
效果图:

参考:https://segmentfault.com/a/1190000014943784(详细解析)
opencv python训练人脸识别的更多相关文章
- 手把手教你如何用 OpenCV + Python 实现人脸识别
下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like 通俗的来讲,就是作为人脸特 ...
- 使用OpenCV和Python进行人脸识别
介绍 人脸识别是什么?或识别是什么?当你看到一个苹果时,你的大脑会立刻告诉你这是一个苹果.在这个过程中,你的大脑告诉你这是一个苹果水果,用简单的语言来说就是识别.那么什么是人脸识别呢?我肯定你猜对了. ...
- OpenCV + python 实现人脸检测(基于照片和视频进行检测)
OpenCV + python 实现人脸检测(基于照片和视频进行检测) Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征 ...
- 【从零学习openCV】IOS7人脸识别实战
前言 接着上篇<IOS7下的人脸检測>,我们顺藤摸瓜的学习怎样在IOS7下用openCV的进行人脸识别,实际上非常easy,因为人脸检測部分已经完毕,剩下的无非调用openCV的方法对採集 ...
- 基于Opencv快速实现人脸识别(完整版)
无耻收藏网页链接: 基于OpenCV快速实现人脸识别:https://blog.csdn.net/beyond9305/article/details/92844258 基于Opencv快速实现人脸识 ...
- Opencv摄像头实时人脸识别
Introduction 网上存在很多人脸识别的文章,这篇文章是我的一个作业,重在通过摄像头实时采集人脸信息,进行人脸检测和人脸识别,并将识别结果显示在左上角. 利用 OpenCV 实现一个实时的人脸 ...
- 写个神经网络,让她认得我`(๑•ᴗ•๑)(Tensorflow,opencv,dlib,cnn,人脸识别)
训练一个神经网络 能让她认得我 阅读原文 这段时间正在学习tensorflow的卷积神经网络部分,为了对卷积神经网络能够有一个更深的了解,自己动手实现一个例程是比较好的方式,所以就选了一个这样比较有点 ...
- 手把手教你如何用 OpenCV + Python 实现人脸检测
配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like Haar-like百科释义.通俗的来讲 ...
- AI人工智能之基于OpenCV+face_recognition实现人脸识别
因近期公司项目需求,需要从监控视频里识别出人脸信息.OpenCV非常庞大,其中官方提供的人脸模型分类器也可以满足基本的人脸识别,当然我们也可以训练自己的人脸模型数据,但是从精确度和专业程度上讲Open ...
随机推荐
- LinkedList学习:API调用、栈、队列实现
参考的博客 Java 集合系列05之 LinkedList详细介绍(源码解析)和使用示例 如果你想详细的区了解容器知识以及本文讲的LinkedList,我推荐你去看这篇博客和这个做个的容器系列 Lin ...
- CNN反向传播算法过程
主模块 规格数据输入(加载,调格式,归一化) 定义网络结构 设置训练参数 调用初始化模块 调用训练模块 调用测试模块 画图 初始化模块 设置初始化参数(输入通道,输入尺寸) 遍历层(计算尺寸,输入输出 ...
- PAT A1025 pat ranking
有n个考场,每个考场都有若干数量个考生,现给出各个考场中考生的准考证号和分数,要求将所有考生的分数从高到低排序,并输出 #include<iostream> #include<str ...
- Link Analysis_1_Basic Elements
1. Edge Attributes 1.1 Methods of category 1.1.1 Basic three categories in terms of number of layers ...
- IPython 自动重载魔术
在开启IPython 后输入下列命令就可以开启Ipython 的自动重载 %load_ext autoreload %autoreload 2 当你在IPython中导入的函数或类发生修改时,IPyt ...
- 通过SparkListener监控spark应用
监控spark应用的方式比较多,比如spark on yarn可以通过yarnClient api监控.这里介绍的是spark内置的一种监控方式 如果是sparkStreaming,对应的则是stre ...
- sklearn中实现随机梯度下降法(多元线性回归)
sklearn中实现随机梯度下降法 随机梯度下降法是一种根据模拟退火的原理对损失函数进行最小化的一种计算方式,在sklearn中主要用于多元线性回归算法中,是一种比较高效的最优化方法,其中的梯度下降系 ...
- L2-002. 链表去重(模拟)
题意: 给定一个带整数键值的单链表L,本题要求你编写程序,删除那些键值的绝对值有重复的结点.即对任意键值K,只有键值或其绝对值等于K的第一个结点可以被保留.同时,所有被删除的结点必须被保存在另外一个链 ...
- 关于目标检测的anchor问题
关于目标检测其实我一直也在想下面的两个论断: Receptive Field Is Natural Anchor Receptive Field Is All You Need 只是一直没有实验.但是 ...
- Codeforces 590 A:Median Smoothing
A. Median Smoothing time limit per test 2 seconds memory limit per test 256 megabytes input standard ...