opencv python训练人脸识别
总计分为三个步骤
一、捕获人脸照片
二、对捕获的照片进行训练
三、加载训练的数据,识别
使用python3.6.8,opencv,numpy,pil
第一步:通过笔记本前置摄像头捕获脸部图片
将捕获的照片存在picData文件夹中,并格式为user.id.num.jpg。id在识别时和人名数组一一对应。
import numpy as np
import cv2 cap = cv2.VideoCapture(0)
face_cascade = cv2.CascadeClassifier("data/haarcascade_frontalface_default.xml")
sampleNum = 0
Id = input('请输入id:') while True:
ret, img = cap.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in faces:
img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
# 增加例子数
sampleNum = sampleNum + 1 # 把照片保存到数据集文件夹
cv2.imwrite(
"picData/user." + str(Id) + "." + str(sampleNum) + ".jpg",
gray[y : y + h, x : x + w],
)
cv2.imshow("img", img)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
if sampleNum == 3000:
break cap.release()
cv2.destroyAllWindows()
第二步:训练数据
将训练好的数据存储在data/trainner.yml中
import cv2
import os
import numpy as np
from PIL import Image recognizer = cv2.face.LBPHFaceRecognizer_create()
detector = cv2.CascadeClassifier("data/haarcascade_frontalface_default.xml") def get_images_and_labels(path):
image_paths = [os.path.join(path, f) for f in os.listdir(path)]
face_samples = []
ids = [] for image_path in image_paths:
image = Image.open(image_path).convert("L")
image_np = np.array(image, "uint8")
if os.path.split(image_path)[-1].split(".")[-1] != "jpg":
continue
image_id = int(os.path.split(image_path)[-1].split(".")[1])
faces = detector.detectMultiScale(image_np)
for (x, y, w, h) in faces:
face_samples.append(image_np[y : y + h, x : x + w])
ids.append(image_id) return face_samples, ids faces, Ids = get_images_and_labels("picData")
recognizer.train(faces, np.array(Ids))
recognizer.save("data/trainner.yml")
第三步:人脸识别
加载第二步训练的数据,定义需要识别的人名。
import cv2 recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('data/trainner.yml')
faceCascade = cv2.CascadeClassifier("data/haarcascade_frontalface_default.xml")
font = cv2.FONT_HERSHEY_SIMPLEX idnum = 0 names = ['kAng'] cam = cv2.VideoCapture(0)
minW = 0.1*cam.get(3)
minH = 0.1*cam.get(4) while True:
ret, img = cam.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.2,
minNeighbors=5,
minSize=(int(minW), int(minH))
) for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
idnum, confidence = recognizer.predict(gray[y:y+h, x:x+w]) if confidence >50:
idnum = names[idnum]
confidence = "{0}%".format(round(confidence))
else:
idnum = "unknown"
confidence = "{0}%".format(round(confidence)) cv2.putText(img, str(idnum), (x+5, y-5), font, 1, (0, 0, 255), 1)
cv2.putText(img, str(confidence), (x+5, y+h-5), font, 1, (255, 255, 0), 1) cv2.imshow('camera', img)
k = cv2.waitKey(10)
if k == 27:
break cam.release()
cv2.destroyAllWindows()
效果图:

参考:https://segmentfault.com/a/1190000014943784(详细解析)
opencv python训练人脸识别的更多相关文章
- 手把手教你如何用 OpenCV + Python 实现人脸识别
下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like 通俗的来讲,就是作为人脸特 ...
- 使用OpenCV和Python进行人脸识别
介绍 人脸识别是什么?或识别是什么?当你看到一个苹果时,你的大脑会立刻告诉你这是一个苹果.在这个过程中,你的大脑告诉你这是一个苹果水果,用简单的语言来说就是识别.那么什么是人脸识别呢?我肯定你猜对了. ...
- OpenCV + python 实现人脸检测(基于照片和视频进行检测)
OpenCV + python 实现人脸检测(基于照片和视频进行检测) Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征 ...
- 【从零学习openCV】IOS7人脸识别实战
前言 接着上篇<IOS7下的人脸检測>,我们顺藤摸瓜的学习怎样在IOS7下用openCV的进行人脸识别,实际上非常easy,因为人脸检測部分已经完毕,剩下的无非调用openCV的方法对採集 ...
- 基于Opencv快速实现人脸识别(完整版)
无耻收藏网页链接: 基于OpenCV快速实现人脸识别:https://blog.csdn.net/beyond9305/article/details/92844258 基于Opencv快速实现人脸识 ...
- Opencv摄像头实时人脸识别
Introduction 网上存在很多人脸识别的文章,这篇文章是我的一个作业,重在通过摄像头实时采集人脸信息,进行人脸检测和人脸识别,并将识别结果显示在左上角. 利用 OpenCV 实现一个实时的人脸 ...
- 写个神经网络,让她认得我`(๑•ᴗ•๑)(Tensorflow,opencv,dlib,cnn,人脸识别)
训练一个神经网络 能让她认得我 阅读原文 这段时间正在学习tensorflow的卷积神经网络部分,为了对卷积神经网络能够有一个更深的了解,自己动手实现一个例程是比较好的方式,所以就选了一个这样比较有点 ...
- 手把手教你如何用 OpenCV + Python 实现人脸检测
配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like Haar-like百科释义.通俗的来讲 ...
- AI人工智能之基于OpenCV+face_recognition实现人脸识别
因近期公司项目需求,需要从监控视频里识别出人脸信息.OpenCV非常庞大,其中官方提供的人脸模型分类器也可以满足基本的人脸识别,当然我们也可以训练自己的人脸模型数据,但是从精确度和专业程度上讲Open ...
随机推荐
- OPCDA通信--工作在透明模式下的CISCO ASA 5506-X防火墙配置
尊重原创,转发请声名 inside OPCSERVER 一台 outside OPCCLIENT 一台 route模式 配置没成功,放弃,采用透明模式 !----进入全局配置-- configure ...
- 「HNOI/AHOI2018」道路
传送门 Luogu 解题思路 考虑树形 \(\text{DP}\) 设状态 \(dp[u][i][j]\) 表示从首都走到点 \(u\) ,经过 \(i\) 条公路,\(j\) 条铁路的最小不方便值. ...
- Derivative Pricing_2_Vasicek
*Catalog 1. Plotting Vasicek Trajectories 2. CKLS Method for Parameter Estimation (elaborated by GMM ...
- 【LOJ2542】「PKUWC2018」随机游走
题意 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一 ...
- SciPy 积分
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- python进阶强化学习
最近学习了慕课的python进阶强化训练,将学习的内容记录到这里,同时也增加了很多相关知识. 主要分为以下九个模块: 基本使用 迭代器和生成器 字符串 文件IO操作 自定义类和类的继承 函数装饰器和类 ...
- CentOS7 环境下 在Hadoop集群安装Hive
1.下载Hive的tar.gz包:http://mirror.bit.edu.cn/apache/hive/ 2.放入CentOS 7 系统中并解压:tar -zxvf apache-hive-2.3 ...
- 在ListView头和尾添加东西
直接上代码 import android.support.v7.app.AppCompatActivity; import android.os.Bundle; import android.view ...
- vs2010编译C++ 运算符
// CTest.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> #include &l ...
- 搭建python的开发环境(采用eclipse的开发工具)在线和离线安装pyDev
一.首先下载python的开发环境并安装 在这里下载python3.7.2,然后安装在一个指定文件夹,随后,将安装路径配置到环境变量中 验证是否成功 OK! 二.在线安装pyDev工具 三.导入开发环 ...