cojs QAQ的矩阵 题解报告
题目描述非常的清晰
首先我们考虑(A*B)^m的求法,这个部分可以参考BZOJ 杰杰的女性朋友
我们不难发现(A*B)^m=A*(B*A)^(m-1)*B
A*B是n*n的矩阵,而B*A是k*k的矩阵,这样就大大缩小了矩阵的大小
因为矩阵乘法满足结合律,我们先对(B*A)做快速幂,之后乘一下就可以了
之后我们考虑如果没有(i-1)^3的这个系数怎么求G(i)的前缀和
因为矩阵乘法满足分配率,我们利用矩阵倍增((B*A)^0+(B*A)^1……+(B*A)^(m-1))之后乘一下就可以了
之后我们发现把系数配进去我们需要求sigma(i^3*(B*A)^i)这个矩阵
我们考虑sigma(i*(B*A)^i)的求法
设F(i)=i*(B*A)^i,H(i)=(B*A)^i
F(i)= j*(B*A)^i + (i-j) *(B*A)^i = (j*(B*A)^j * (B*A)^(i-j)) + ((i-j)*(B*A)^(i-j) *(B*A)^j)
F(i)=F(j)*H(i-j)+F(i-j)*H(j)
同理我们将i^2转化成(j+(i-j))^2之后展开会得到i^2*(B*A)^i的公式
然后同样转化i^3也可以得到类似的公式
这样我们重新定义一下矩阵乘法就可以同样利用矩阵倍增求出sigma(i^3*(B*A)^i)了
这样就可以得到答案了
cojs QAQ的矩阵 题解报告的更多相关文章
- cojs 强连通图计数1-2 题解报告
OwO 题目含义都是一样的,只是数据范围扩大了 对于n<=7的问题,我们直接暴力搜索就可以了 对于n<=1000的问题,我们不难联想到<主旋律>这一道题 没错,只需要把方程改一 ...
- cojs 二分图计数问题1-3 题解报告
OwO 良心的FFT练手题,包含了所有的多项式基本运算呢 其中一部分解法参考了myy的uoj的blog 二分图计数 1: 实际是求所有图的二分图染色方案和 我们不妨枚举这个图中有多少个黑点 在n个点中 ...
- cojs 疯狂的字符串 题解报告
首先这道题是GT考试的加强版本QAQ 当n<k的时候,答案显然是10^n 当n=k的时候,答案显然是10^n-1 这样就有20分辣 之后我们考虑k<=20的做法 显然设f(i,j)表示前i ...
- cojs 安科赛斯特 题解报告
QAQ 从IOI搬了一道题目过来 官方题解貌似理论上没有我的做法优,我交到BZOJ上也跑的飞快 结果自己造了个数据把自己卡成了4s多,真是忧桑的故事 不过貌似原题是交互题,并不能离线 说说我的做法吧 ...
- cojs QAQ的序列 解题报告
QAQ 这是从论文上搬的一道题目 但是由于并没有找到题目地址,所以就自己造数据咯 发现数据无比难造 (本题数据极弱,暴力或可AC?) 我们考虑离线的话其实只需要莫队就可以了 那么在线怎么做呢 二进制分 ...
- cojs DAG计数问题1-4 题解报告
最近突然有很多人来问我这些题目怎么做OwO 然而并不是我出的,结论我也不是很懂 研究了一下觉得非常的一颗赛艇,于是就打算写这样一篇题解 DAG 1 我们考虑DAG的性质,枚举出度为0的点 设出度为0的 ...
- CFEducational Codeforces Round 66题解报告
CFEducational Codeforces Round 66题解报告 感觉丧失了唯一一次能在CF上超过wqy的机会QAQ A 不管 B 不能直接累计乘法打\(tag\),要直接跳 C 考虑二分第 ...
- 2015浙江财经大学ACM有奖周赛(一) 题解报告
2015浙江财经大学ACM有奖周赛(一) 题解报告 命题:丽丽&&黑鸡 这是命题者原话. 题目涉及的知识面比较广泛,有深度优先搜索.广度优先搜索.数学题.几何题.贪心算法.枚举.二进制 ...
- 题解报告:hdu 1398 Square Coins(母函数或dp)
Problem Description People in Silverland use square coins. Not only they have square shapes but also ...
随机推荐
- VMware虚拟机中设置端口映射(转载)
VMware Workstation提供了两种虚拟机上网方式,一种bridge,一种NAT,bridge可以获得公网地址,而NAT只能是内网地址了. NAT相当于把主机当成了一个NAT转换器,我们可以 ...
- WPF与DevExpress之旅-序言
随着.NET技术的发展,从之前的WINFORM转向到WPF是我们技术改革的必然趋势.WPF能给人带来震撼的视觉体验,也能更加规范我们的开发模式,与传统的WINFORM开发来说具有革命性的意义.DevE ...
- EAI概述
企业的业务流程同时会涉及多个应用系统,因此要求这些系统能够协同,但接口,架构的不统一往往使得这些本应紧密集成的应用系统成了一个个“信息孤岛”.于是,企业应用集成(Enterprise Applicat ...
- Makefile之wildcard
1.wildcard : 扩展通配符2.notdir : 去除路径3.patsubst :替换通配符 例子:建立一个测试目录,在测试目录下建立一个名为sub的子目录$ mkdir test$ cd t ...
- net windows Kafka
net windows Kafka 安装与使用入门(入门笔记) 完整解决方案请参考: Setting Up and Running Apache Kafka on Windows OS 在环境搭建 ...
- Careercup - Facebook面试题 - 4907555595747328
2014-05-02 07:49 题目链接 原题: Given a set of n points (coordinate in 2d plane) within a rectangular spac ...
- android动态增加控件时控制样式的方法
在学习android的动画时,发现所谓的tween动画只是改变绘制效果并不改变原控件的位置时是颇为失望的,虽然3.0之后已经有了property animation,但是由于要兼容老版本的androi ...
- OpenCV之mixChannels()函数使用说明
step 1: 函数功能说明 mixChannels主要就是把输入的矩阵(或矩阵数组)的某些通道拆分复制给对应的输出矩阵(或矩阵数组)的某些通道中,其中的对应关系就由fromTo参数制定. step ...
- C# Winform 拖放操作
http://www.cnblogs.com/imlions/p/3189773.html 在开发程序的时候,为了提高用户的使用体验,或满足相关用户的功能,总是离不开拖放功能.而本文是总结winfor ...
- 1231: [Usaco2008 Nov]mixup2 混乱的奶牛 - BZOJ
Description 混乱的奶牛 [Don Piele, 2007] Farmer John的N(4 <= N <= 16)头奶牛中的每一头都有一个唯一的编号S_i (1 <= S ...