参考文献:

https://blog.csdn.net/sinat_26917383/article/details/72857454

http://keras-cn.readthedocs.io/en/latest/layers/core_layer/ keras中文文档

keras网络结构


常用层

常用层对应于core模块,core内部定义了一系列常用的网络层,包括全连接层、激活层等。

Dense层

keras.layers.core.Dense(units, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)

Dense就是常用的全连接层,所实现的运算是output = activation(dot(input, kernel)+bias)。其中activation是逐元素计算的激活函数,kernel是本层的权值矩阵,bias为偏置向量,只有当use_bias=True才会添加。

如果本层的输入数据的维度大于2,则会先被压为与kernel相匹配的大小。

使用示例:

# as first layer in a sequential model:
# as first layer in a sequential model:
model = Sequential()
model.add(Dense(32, input_shape=(16,)))
# now the model will take as input arrays of shape (*, 16)
# and output arrays of shape (*, 32) # after the first layer, you don't need to specify
# the size of the input anymore:
model.add(Dense(32))

参数:

  • units:大于0的整数,代表该层的输出维度。

  • activation:激活函数,为预定义的激活函数名(参考激活函数),或逐元素(element-wise)的Theano函数。如果不指定该参数,将不会使用任何激活函数(即使用线性激活函数:a(x)=x)

  • use_bias: 布尔值,是否使用偏置项

  • kernel_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers

  • bias_initializer:偏置向量初始化方法,为预定义初始化方法名的字符串,或用于初始化偏置向量的初始化器。参考initializers

  • kernel_regularizer:施加在权重上的正则项,为Regularizer对象

  • bias_regularizer:施加在偏置向量上的正则项,为Regularizer对象

  • activity_regularizer:施加在输出上的正则项,为Regularizer对象

  • kernel_constraints:施加在权重上的约束项,为Constraints对象

  • bias_constraints:施加在偏置上的约束项,为Constraints对象

输入

形如(batch_size, ..., input_dim)的nD张量,最常见的情况为(batch_size, input_dim)的2D张量

输出

形如(batch_size, ..., units)的nD张量,最常见的情况为(batch_size, units)的2D张量


Activation层

keras.layers.core.Activation(activation)

激活层对一个层的输出施加激活函数

参数

  • activation:将要使用的激活函数,为预定义激活函数名或一个Tensorflow/Theano的函数。参考激活函数

输入shape

任意,当使用激活层作为第一层时,要指定input_shape

输出shape

与输入shape相同


Dropout层

keras.layers.core.Dropout(rate, noise_shape=None, seed=None)

为输入数据施加Dropout。Dropout将在训练过程中每次更新参数时按一定概率(rate)随机断开输入神经元,Dropout层用于防止过拟合。

参数

  • rate:0~1的浮点数,控制需要断开的神经元的比例

  • noise_shape:整数张量,为将要应用在输入上的二值Dropout mask的shape,例如你的输入为(batch_size, timesteps, features),并且你希望在各个时间步上的Dropout mask都相同,则可传入noise_shape=(batch_size, 1, features)。

  • seed:整数,使用的随机数种子

Flatten层

keras.layers.core.Flatten()

Flatten层用来将输入“压平”,即把多维的输入一维化,常用在从卷积层到全连接层的过渡。Flatten不影响batch的大小。

使用示例

model = Sequential()
model.add(Convolution2D(64, 3, 3,
border_mode='same',
input_shape=(3, 32, 32)))
# now: model.output_shape == (None, 64, 32, 32) model.add(Flatten())
# now: model.output_shape == (None, 65536)

Reshape层

Reshape层用来将输入shape转换为特定的shape

参数

  • target_shape:目标shape,为整数的tuple,不包含样本数目的维度(batch大小)

输入shape

任意,但输入的shape必须固定。当使用该层为模型首层时,需要指定input_shape参数

输出shape

(batch_size,)+target_shape

使用示例:

# as first layer in a Sequential model
model = Sequential()
model.add(Reshape((3, 4), input_shape=(12,)))
# now: model.output_shape == (None, 3, 4)
# note: `None` is the batch dimension # as intermediate layer in a Sequential model
model.add(Reshape((6, 2)))
# now: model.output_shape == (None, 6, 2) # also supports shape inference using `-1` as dimension
model.add(Reshape((-1, 2, 2)))
# now: model.output_shape == (None, 3, 2, 2)


Permute层

keras.layers.core.Permute(dims)

Permute层将输入的维度按照给定模式进行重排,例如,当需要将RNN和CNN网络连接时,可能会用到该层。

参数

  • dims:整数tuple,指定重排的模式,不包含样本数的维度。重拍模式的下标从1开始。例如(2,1)代表将输入的第二个维度重拍到输出的第一个维度,而将输入的第一个维度重排到第二个维度

使用示例:

model = Sequential()
model.add(Permute((2, 1), input_shape=(10, 64)))
# now: model.output_shape == (None, 64, 10)
# note: `None` is the batch dimension

输入shape

任意,当使用激活层作为第一层时,要指定input_shape

输出shape

与输入相同,但是其维度按照指定的模式重新排列


RepeatVector层

keras.layers.core.RepeatVector(n)

RepeatVector层将输入重复n次

参数

  • n:整数,重复的次数

输入shape

形如(nb_samples, features)的2D张量

输出shape

形如(nb_samples, n, features)的3D张量

使用示例

model = Sequential()
model.add(Dense(32, input_dim=32))
# now: model.output_shape == (None, 32)
# note: `None` is the batch dimension model.add(RepeatVector(3))
# now: model.output_shape == (None, 3, 32)

Lambda层

keras.layers.core.Lambda(function, output_shape=None, mask=None, arguments=None)

本函数用以对上一层的输出施以任何Theano/TensorFlow表达式

参数

  • function:要实现的函数,该函数仅接受一个变量,即上一层的输出

  • output_shape:函数应该返回的值的shape,可以是一个tuple,也可以是一个根据输入shape计算输出shape的函数

  • mask: 掩膜

  • arguments:可选,字典,用来记录向函数中传递的其他关键字参数

使用示例:

# add a x -> x^2 layer
model.add(Lambda(lambda x: x ** 2))
# add a layer that returns the concatenation
# of the positive part of the input and
# the opposite of the negative part def antirectifier(x):
x -= K.mean(x, axis=1, keepdims=True)
x = K.l2_normalize(x, axis=1)
pos = K.relu(x)
neg = K.relu(-x)
return K.concatenate([pos, neg], axis=1) def antirectifier_output_shape(input_shape):
shape = list(input_shape)
assert len(shape) == 2 # only valid for 2D tensors
shape[-1] *= 2
return tuple(shape) model.add(Lambda(antirectifier,
output_shape=antirectifier_output_shape))

输入shape

任意,当使用该层作为第一层时,要指定input_shape

输出shape

output_shape参数指定的输出shape,当使用tensorflow时可自动推断


ActivityRegularizer层

keras.layers.core.ActivityRegularization(l1=0.0, l2=0.0)

经过本层的数据不会有任何变化,但会基于其激活值更新损失函数值

参数

  • l1:1范数正则因子(正浮点数)

  • l2:2范数正则因子(正浮点数)

输入shape

任意,当使用该层作为第一层时,要指定input_shape

输出shape

与输入shape相同


Masking层

keras.layers.core.Masking(mask_value=0.0)

使用给定的值对输入的序列信号进行“屏蔽”,用以定位需要跳过的时间步

对于输入张量的时间步,即输入张量的第1维度(维度从0开始算,见例子),如果输入张量在该时间步上都等于mask_value,则该时间步将在模型接下来的所有层(只要支持masking)被跳过(屏蔽)。

如果模型接下来的一些层不支持masking,却接受到masking过的数据,则抛出异常。

使用示例:

考虑输入数据x是一个形如(samples,timesteps,features)的张量,现将其送入LSTM层。因为你缺少时间步为3和5的信号,所以你希望将其掩盖。这时候应该:

  • 赋值x[:,3,:] = 0.x[:,5,:] = 0.

  • 在LSTM层之前插入mask_value=0.Masking

model = Sequential()
model.add(Masking(mask_value=0., input_shape=(timesteps, features)))
model.add(LSTM(32))
												

keras_基本网络层结构(1)_常用层的更多相关文章

  1. keras_基本网络层结构(2)_卷积层

    参考文献:http://keras-cn.readthedocs.io/en/latest/layers/convolutional_layer/ 卷积层 Conv1D层 keras.layers.c ...

  2. Keras网络层之常用层Core

    常用层 常用层对应于core模块,core内部定义了一系列常用的网络层,包括全连接.激活层等 Dense层 keras.layers.core.Dense(units, activation=None ...

  3. 【转】Caffe初试(七)其它常用层及参数

    本文讲解一些其它的常用层,包括:softmax-loss层,Inner Product层,accuracy层,reshape层和dropout层及它们的参数配置. 1.softmax-loss sof ...

  4. Caffe学习系列(5):其它常用层及参数

    本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss so ...

  5. 转 Caffe学习系列(5):其它常用层及参数

    本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss so ...

  6. 4、Caffe其它常用层及参数

    借鉴自:http://www.cnblogs.com/denny402/p/5072746.html 本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accu ...

  7. caffe(5) 其他常用层及参数

    本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss so ...

  8. Linux_用户级_常用命令(4):cp

    Linux_用户级_常用命令之cp 开篇语:懒是人类进步的源动力 本文原创,专为光荣之路公众号所有,欢迎转发,但转发请务必写出处! Linux常用命令第二集包含命令:cp 格式 cp  [-optio ...

  9. 1.Python_字符串_常用办法总结

    明确:对字符串的操作方法都不会改变原来字符串的值. 1.去掉空格和特殊符号 name.strip() 去掉空格和换行符 name.strip("xx") 去掉某个字符串 name. ...

随机推荐

  1. Linux java Tomcat 项目中 new Date 获取时间 8小时 时差

    转载自: https://blog.csdn.net/liqinghuiyx/article/details/53333284 起因:在本地开发的WEB项目部署到Linux 下后,存入数据库的时间少了 ...

  2. tar 压缩解压命令详解

    tar -c: 建立压缩档案-x:解压-t:查看内容-r:向压缩归档文件末尾追加文件-u:更新原压缩包中的文件 这五个是独立的命令,压缩解压都要用到其中一个,可以和别的命令连用但只能用其中一个.下面的 ...

  3. centos7上安装php5.6

    配置yum源 追加CentOS 6.5的epel及remi源. # rpm -Uvh http://ftp.iij.ad.jp/pub/linux/fedora/epel/6/x86_64/epel- ...

  4. Java打包可执行jar包 包含外部文件

    外部文件在程序中设置成相对当前工程路径,执行jar包时,将外部文件放在和jar包平级的目录. public class Main { 3 public static void main(String[ ...

  5. VS2010/MFC编程入门之十(对话框:设置对话框控件的Tab顺序)

    前面几节鸡啄米为大家演示了加法计算器程序完整的编写过程,本节主要讲对话框上控件的Tab顺序如何调整. 上一讲为“计算”按钮添加了消息处理函数后,加法计算器已经能够进行浮点数的加法运算.但是还有个遗留的 ...

  6. 常用php操作redis命令整理(五)ZSET类型

    ZADD 向有序集合插入一个元素,元素关联一个数值,插入成功返回1,同时集合元素不可以重复, 如果元素已经存在返回 0 <?php var_dump($redis->zadd(,'A')) ...

  7. php+mysql 注入基本过程

    当mysql版本>5.0时我们只需要访问information_schema库即可查询数据库的相关概要信息,而对于<5.0的版本则需要爆破,今天我们测试的环境是mysql 5.5.40,对 ...

  8. SQL 中 not in 查询不到数据问题

    在开发的过程中,遇到过not in 始终查询不到数据问题 select * from T_CustomerInfo where CustomerID not in (select CustomerID ...

  9. 《重构网络-SDN架构与实现》阅读随笔

    <重构网络-SDN架构与实现>: SDNLAB <重构网络-SDN架构与实现>新书有奖试读活动 资源下载 随笔 有幸拜读了李呈前辈和杨泽卫杨老师的作品<重构网络-SDN架 ...

  10. LightOJ 1030 Discovering Gold (期望)

    https://vjudge.net/problem/LightOJ-1030 题意: 在一个1×N的格子里,每个格子都有相应的金币数,走到相应格子的话,就会得到该格子的金币. 现在从1格子开始,每次 ...