bzoj2383[CEOI2011] ballons
题意
在一条数轴上从左向右有一些气球,每个气球一开始位于横坐标xi的位置,是半径为0的圆.现在开始从左向右给每个气球充气.被充气的气球的半径会不断变大,直到达到这个气球的半径上限Ri或者这个气球和之前被充气的某个气球相切.在半径变大的过程中,气球始终和数轴在横坐标xi的位置相切(即气球的位置不变).
问最后每个气球的半径.
40% n<=2000
100% n<=200000
分析
非常妙的题然而还是不会做
首先考虑暴力怎么做:模拟气球充气的过程,从左到右考虑每个气球的最大半径.
对于第i个气球,它前面的i-1个气球都会对它的半径有一个限制,第j个气球(\(j<i\))使得第i个气球的半径不能超过\(f(i,j)\).假设第j个气球位于\(xj\),第i个气球位于\(xi\),第j个气球充气后半径为R,那么\(f(i,j)=(xi-xj)^2/(4R)\)
我们对所有的f(i,j)和ri取最小值就可以得到i充气之后的半径.这样是\(O(n^2)\)的.
接下来可以观察出一个性质:对于i左侧的两个已经充气的气球j1,j2,如果j1在j2左侧且j1的半径小于j2,那么第i个气球在碰到j1之前必须先碰到j2,也就是会因为j2的阻挡碰不到j1,画画图是比较明显的.严谨一点,这时候一定有\(f(i,j1)>f(i,j2)\).
那么我们既然是从左向右考虑所有气球,就可以对前面的所有气球维护一个单调栈,只存储那些"右侧不存在半径更大的气球"的气球,每次只考虑栈里的气球对第i个气球的影响,然后把第i个气球扔到栈里,该弹出栈的弹出来.然而这样好像复杂度还是\(O(n^2)\)
我做到这里之后就想偏了...考虑有没有单峰性质或者决策单调性,发现都没有,就看题解去了你们看这就是辣鸡
题解非常妙地做到了O(n).
具体是这样:
我们从栈顶的气球开始考虑其对第i个气球的影响.第i个气球的半径初始化为上限ri,然后对f(i,栈顶的气球)取min.
假如取min之后第i个气球的半径比栈顶大:
那么根据刚才观察的性质,这个栈顶之后就没有用了,把它弹出来.如果此时栈非空,那么继续考虑新的栈顶对第i个气球的影响.如此循环,直到栈为空或者第i个气球取min之后的半径比栈顶的半径小.
假如取min之后第i个气球的半径比栈顶小:
考虑栈里其他的气球(在栈顶气球的左侧).既然栈顶的气球在第i个气球的左侧且现在半径比第i个气球大,那么栈顶气球左侧的气球想要碰到第i个气球就必须先碰到栈顶的气球,也就是会因为栈顶的气球的阻挡而不能碰到第i个气球(和刚才观察的性质是对称的)
因此,此时栈里的其他气球不会再对第i个气球的半径产生影响,我们此时得到了第i个气球的最终答案.把第i个气球扔到栈里就可以继续考虑第i+1个气球了.
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn=200005;
double x[maxn],r[maxn];
double R[maxn];
int stk[maxn],top=0;
int main(){
int n;scanf("%d",&n);
for(int i=1;i<=n;++i)scanf("%lf%lf",x+i,r+i);
for(int i=1;i<=n;++i){
R[i]=r[i];int g=i;
while(top){
double tmp=(x[i]-x[stk[top-1]])*(x[i]-x[stk[top-1]])/4.0/R[stk[top-1]];
R[i]=min(R[i],tmp);
if(R[i]<R[stk[top-1]])break;
else --top;
}
stk[top++]=i;
}
for(int i=1;i<=n;++i)printf("%.3f\n",R[i]);
return 0;
}
bzoj2383[CEOI2011] ballons的更多相关文章
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- 湖南大学ACM程序设计新生杯大赛(同步赛)H - Yuanyuan Long and His Ballons
题目描述 Yuanyuan Long is a dragon like this picture? I don’t know, ...
- 【BZOJ2384】[Ceoi2011]Match KMP
[BZOJ2384][Ceoi2011]Match Description 作为新一轮广告大战的一部分,格丁尼亚的一家大公司准备在城市的某处设置公司的标志(logo).公司经理决定用一些整栋的建筑来构 ...
- bzoj 2387: [Ceoi2011]Traffic
bzoj 2387: [Ceoi2011]Traffic 题目描述 The center of Gdynia is located on an island in the middle of the ...
- 【LOJ#2507】[CEOI2011]Matching(KMP,树状数组)
[LOJ#2507][CEOI2011]Matching(KMP,树状数组) 题面 LOJ 题解 发现要做的是排名串的匹配. 然后我们考虑把它转成这个位置之前有多少个数小于当前这个数,这样子只要每个位 ...
- [bzoj1892][bzoj2384][bzoj1461][Ceoi2011]Match/字符串的匹配_KMP_树状数组
2384: [Ceoi2011]Match 1892: Match 1461: 字符串的匹配 题目大意: 数据范围: 题解: 很巧妙的一道题呀. 需要对$KMP$算法有很深的理解才行. 首先我们需要发 ...
- [bzoj1135][Ceoi2011]Match_线段树
[Ceoi2011]Match 题目大意:初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了xi个ri号脚的人.xi为负, ...
- [Ceoi2011]Traffic
#2387. [Ceoi2011]Traffic Online Judge:Bzoj-2387,Luogu-4700 Label:Yy,Tarjan缩点,dfs 题目描述 格丁尼亚的中心位于Kacza ...
- HDU 1004 ballons(map)
题意:输出颜色最多的那个颜色. 思路:水题一道. #include <iostream> #include <string> #include <map> #inc ...
随机推荐
- 20145234黄斐《Java程序设计》实验二—Java面向对象程序设计
1.提交最后三个测试用例都通过的截图,截图上要有画图加水印,输入自己的学号. 2. 以 TDD的方式研究学习StringBuffer 3.对设计模式示例进行扩充,体会OCP原则和DIP原则的应用,初步 ...
- 【MongoDB】如何注册windows服务
一.为什么要注册windows服务 mongodb启动比较麻烦,每次都要cmd去开启.注册windows服务,可以设置开机启动,比较友好. 二.如何注册windows服务 1.安装mongodb 2. ...
- RHCSA-EXAM 模拟题目
参考答案:http://www.cnblogs.com/venicid/category/1088924.html 请首先按找以下要求配置考试系统: * Hostname: server0.examp ...
- 深入解析QML引擎, 第4部分: 自定义解析器
原文 QML Engine Internals, Part 4: Custom Parsers ——————————————————————————————————————————— 上一篇 绑定类型 ...
- RabbitMQ入门:在Spring Boot 应用中整合RabbitMQ
在上一篇随笔中我们认识并安装了RabbitMQ,接下来我们来看下怎么在Spring Boot 应用中整合RabbitMQ. 先给出最终目录结构: 搭建步骤如下: 新建maven工程amqp 修改pom ...
- TW实习日记:第七天
今天早上,将项目的两个企业微信接口:登录和应用消息发送接口,做了最后的收尾工作,把目前我能解决的问题算是基本都解决了.早上还开了一个会,大意是组长封装了许多组件叫我们使用,在不断的使用中打磨组件的可用 ...
- List Leaves 树的层序遍历
3-树2 List Leaves (25 分) Given a tree, you are supposed to list all the leaves in the order of top do ...
- sqlserver-查阻塞
模拟阻塞: 打开两个窗口: 窗口一: BEGIN TRANSACTION--开始事务 --等待1分钟 WAITFOR DELAY '00:1'; 窗口二: 查询阻塞:(当前被阻塞的进程id,不 ...
- php异步学习(2)
PHP开启异步多线程执行脚本 场景要求 客户端调用服务器a.php接口,需要执行一个长达5s-20s不等的耗资源操作,但是客户端响应请求时间为5秒(微信公众账号服务器请求响应超时时间),5s以上无 ...
- USACO 2.3.3 Zero Sum 和为零(深搜枚举)
Description 请考虑一个由1到N(N=3, 4, 5 ... 9)的数字组成的递增数列:1 2 3 ... N. 现在请在数列中插入“+”表示加,或者“-”表示减,抑或是“ ”表示空白,来将 ...