对于三个正方形的位置一共有六种情况。

预处理出(i,j)左上角,左下角,右上角,右下角区域内最大权值的正方形。

枚举分界线更新答案。

刚开始想了一个错误的DP也是蠢啊。

#include<set>
#include<map>
#include<ctime>
#include<queue>
#include<cmath>
#include<cstdio>
#include<vector>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define inf 100000000000000LL
#define pa pair<int,int>
#define ll long long
#define N 2505
#define fp(a,b,c) for(int a=b;a<=c;a++)
#define fd(a,b,c) for(int a=c;a>=b;a--)
using namespace std;
int n,m,K,ans;
int a[N][N],b[N][N],c[N][N],d[N][N],s[N][N];
int main()
{
scanf("%d%d%d",&n,&m,&K);
fp(i,,n)fp(j,,m)
{
int x;scanf("%d",&x);
s[i][j]=s[i-][j]+s[i][j-]-s[i-][j-]+x;
}
fd(i,K,n)fd(j,K,m)s[i][j]-=s[i-K][j]+s[i][j-K]-s[i-K][j-K]; fp(i,K,n)fp(j,K,m)a[i][j]=max(s[i][j],max(a[i-][j],a[i][j-]));
fp(i,K,n)fd(j,K,m)b[i][j]=max(s[i][j],max(b[i-][j],b[i][j+]));
fd(i,K,n)fp(j,K,m)c[i][j]=max(s[i][j],max(c[i+][j],c[i][j-]));
fd(i,K,n)fd(j,K,m)d[i][j]=max(s[i][j],max(d[i+][j],d[i][j+])); fp(i,K,n-K)fp(j,K,m-K)ans=max(ans,a[i][j]+b[i][j+K]+c[i+K][m]);
fp(i,K,n-K)fp(j,K+K,m)ans=max(ans,b[i][j]+d[i+K][j]+a[n][j-K]);
fp(i,K+K,n)fp(j,K,m-K)ans=max(ans,c[i][j]+d[i][j+K]+a[i-K][m]);
fp(i,K,n-K)fp(j,K,m-K)ans=max(ans,a[i][j]+c[i+K][j]+b[n][j+K]); fp(i,K,n)fp(j,K+K,m-K)ans=max(ans,s[i][j]+a[n][j-K]+b[n][j+K]);
fp(i,K+K,n-K)fp(j,K,m)ans=max(ans,s[i][j]+a[i-K][m]+c[i+K][m]); printf("%d\n",ans);
return ;
}

BZOJ 1177 Oil(特技枚举)的更多相关文章

  1. [BZOJ 1177] Oil

    Link:https://www.lydsy.com/JudgeOnline/problem.php?id=1177 Solution: 相当于将大矩形分为3块,取每块中最大的正方形 对于此类分成几块 ...

  2. 枚举(分类讨论):BZOJ 1177: [Apio2009]Oil

    1177: [Apio2009]Oil Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 1477  Solved: 589[Submit] Descri ...

  3. 【BZOJ 1177】【APIO 2009】Oil

    http://www.lydsy.com/JudgeOnline/problem.php?id=1177 前缀和优化,时间复杂度$O(nm)$ 因为数据不全,快速读入会导致RE,切记! #includ ...

  4. BZOJ 1177 [Apio2009]Oil(递推)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1177 [题目大意] 给出一个矩阵,从中选出3个k*k且不相交的矩阵,使得其总和最大 [ ...

  5. 【BZOJ 1177】 [Apio2009]Oil

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 如上图. 显然如果三个正方形.只可能是上面的情况. 则可以处理一下左上角.右上角.左下角.右下角的前缀最大正方形(dp),以及以某一 ...

  6. [BZOJ]1177: [Apio2009]Oil

    题目大意:给出一个n*m的矩阵,选出3个不相交的k*k子矩阵,使得子矩阵中元素和最大.(k<=n,m<=1500) 思路:选出的子矩阵有3种情况:横着排三个.竖着排三个.三角状分布(其中有 ...

  7. BZOJ 1050 旅行comf(枚举最小边-并查集)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1050 题意:给出一个带权图.求一条s到t的路径使得这条路径上最大最小边的比值最小? 思路 ...

  8. BZOJ 3713: [PA2014]Iloczyn( 枚举 )

    斐波那契数列<10^9的数很少很少...所以直接暴力枚举就行了... ------------------------------------------------------------- ...

  9. BZOJ 1088 扫雷Mine 枚举初始状态

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1088 题目大意: 现在棋盘是n×2的,第一列里面某些格子是雷,而第二列没有雷,如下图: ...

随机推荐

  1. 20155336虎光元实验四 Android开发基础

    20155336虎光元实验四 Android开发基础 实验内容 1:完成Hello World, 要求修改res目录中的内容,Hello World后要显示自己的学号 2:创建 ThirdActivi ...

  2. echarts 柱状图移除圆角

    itemStyle: { normal: { color: '#59519f', barBorderColor: '#59519f', barBorderWidth: 6, barBorderRadi ...

  3. (转) 转换Drupal7模块到Drupal8

    转载地址:http://verynull.com/2015/11/02/Converting-7-x-modules-to-8-x/ 本节主要介绍如何把drupal7的模块转化为drupal8.参考资 ...

  4. scala : 类型与类

    scala类型系统:1) 类型与类 在Java里,一直到jdk1.5之前,我们说一个对象的类型(type),都与它的class是一一映射的,通过获取它们的class对象,比如 String.class ...

  5. EF6+MVC5之Oracleo数据库的CodeFirst方式实现

    http://www.oracle.com/technetwork/topics/dotnet/whatsnew/index.htm http://www.knowsky.com/887470.htm ...

  6. 【转】RobotFrameWork+APPIUM实现对安卓APK的自动化测试----第二篇【原理】

    接着上一篇,我们开始聊聊APPIUM的框架和运行模式.废话不多说直接上图. 1.首先自动化脚本通过RobotFrameWork将命令传递给Appium的客户端: 2.然后[Appium的客户端]将接受 ...

  7. [C++]C++得到最大的int值

    要得到最大的int值: 利用(unsigned int)-1,这样得到的就是unsigned int表示的最大值, int值只是比unsigned int多一位符号位,所以对(unsigned int ...

  8. PHASER3 设置场景SCENE SLEEPING休眠和WAKE唤醒

    A good way to set scene stop when hidden and run while visible again ! 使用sleep和wake方法的好处: 1.可以彻底让sce ...

  9. Ubuntu用户设置文件说明

    Ubuntu用户设置文件说明 Ubuntu作为Linux的一个发行版本,自然具有Linux系统的多用户特性.因为经常会使用和管理Ubuntu的用户,现将Ubuntu系统下的User的个性化配置整理如下 ...

  10. 【转】PHPCMS v9 自定义表单添加验证码验证

    1.  在 \phpcms\templates\default\formguide\show.html 中添加验证码显示 <input type="text" id=&quo ...