1948 NOI 嘉年华
NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手, 吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不同的地点举办。每 个嘉年华可能包含很多个活动,而每个活动只能在一个嘉年华中举办。 现在嘉年华活动的组织者小安一共收到了 n 个活动的举办申请,其中第 i 个 活动的起始时间为 Si,活动的持续时间为 Ti。这些活动都可以安排到任意一个嘉 年华的会场,也可以不安排。 小安通过广泛的调查发现,如果某个时刻,两个嘉年华会场同时有活动在进 行(不包括活动的开始瞬间和结束瞬间),那么有的选手就会纠结于到底去哪个 会场,从而变得不开心。所以,为了避免这样不开心的事情发生,小安要求不能 有两个活动在两个会场同时进行(同一会场内的活动可以任意进行)。 另外,可以想象,如果某一个嘉年华会场的活动太少,那么这个嘉年华的吸 引力就会不足,容易导致场面冷清。所以小安希望通过合理的安排,使得活动相 对较少的嘉年华的活动数量最大。 此外,有一些活动非常有意义,小安希望能举办,他希望知道,如果第 i 个 活动必须举办(可以安排在两场嘉年华中的任何一个),活动相对较少的嘉年华 的活动数量的最大值。
输入的第一行包含一个整数 n,表示申请的活动个数。 接下来 n 行描述所有活动,其中第 i 行包含两个整数 Si、Ti,表示第 i 个活 动从时刻 Si开始,持续 Ti的时间。
输出的第一行包含一个整数,表示在没有任何限制的情况下,活动较少的嘉 年华的活动数的最大值。 接下来 n 行每行一个整数,其中第 i 行的整数表示在必须选择第 i 个活动的 前提下,活动较少的嘉年华的活动数的最大值。
5
8 2
1 5
5 3
3 2
5 3
2
2
1
2
2
2
【样例说明】
在没有任何限制的情况下,最优安排可以在一个嘉年华安排活动 1, 4,而在 另一个嘉年华安排活动 3, 5,活动 2 不安排。
【数据规模与约定】
1≤n≤200
0≤Si≤109
1≤Ti≤ 109
先看这个大神的详细题解,这个写得真的很清晰很好懂啊!

然后说说那个什么递增单凸的。
首先,显然pre[][x]和suf[][y]都是递减的。
对于x确定,y在变,f[x][y]=min(x+y,pre[i][x]+num[i][j]+suf[j][y]),显然x+y随y递增而增,pre[i][x]+num[i][j]+suf[j][y]随y递增而减。

就是这样的,下面标红的函数就是真正的函数,显然是上凸的了。
所以程序里面y按顺序,找到一个now<当前最优值 就可以break了。
然后说明一个就是随着x的增加,取最优值的y单调递减。这个画个图也可以看出来了。

所以就是这样做了,y这里均摊的话,就是O(n^3) --引自Konjakmoyu
#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;
const int N=;
const int inf=1e9;
int n,p,ans,s[N],t[N];
struct node{int x,y;}a[N];
int num[N][N],pre[N][N],suf[N][N];
int g[N][N];
bool cmp(const node &a,const node &b){
return a.x<b.x;
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d%d",&s[i],&t[i]);t[i]+=s[i];
a[i<<].x=s[i];a[i<<].y=i;
a[i<<|].x=t[i];a[i<<|].y=-i;
}
sort(a+,a+n*+,cmp);
for(int i=;i<=*n+;i++){
if(i==||a[i].x!=a[i-].x) p++;
if(a[i].y>) s[a[i].y]=p;
else t[-a[i].y]=p;
}
for(int i=;i<=p;i++){
for(int j=i;j<=p;j++){
for(int k=;k<=n;k++){
if(s[k]>=i&&t[k]<=j){
num[i][j]++;
}
}
}
}
for(int i=;i<=p;i++){
for(int j=;j<=n;j++){
if(j>num[][i]){pre[i][j]=-inf;continue;}
for(int k=;k<=i;k++){
pre[i][j]=max(pre[i][j],pre[k][j]+num[k][i]);
if(j-num[k][i]>=) pre[i][j]=max(pre[i][j],pre[k][j-num[k][i]]);
}
}
}
for(int i=p;i>=;i--){
for(int j=;j<=n;j++){
if(j>num[i][p]){suf[i][j]=-inf;continue;}
for(int k=i;k<=p;k++){
suf[i][j]=max(suf[i][j],suf[k][j]+num[i][k]);
if(j-num[i][k]>=) suf[i][j]=max(suf[i][j],suf[k][j-num[i][k]]);
}
}
}
for(int i=,now,id;i<=p;i++){
for(int j=i;j<=p;j++){
int y=num[j][p];
for(int x=;x<=num[][i];x++){
for(;y>=;y--){
now=min(x+y,pre[i][x]+num[i][j]+suf[j][y]);
if(g[i][j]<=now){
g[i][j]=now;
id=y;
}
else break;
}
y=id;
}
ans=max(ans,g[i][j]);
}
}
for(int i=;i<=p;i++){
for(int j=p;j>=i;j--){
g[i][j]=max(g[i][j],g[i][j+]);
}
}
for(int i=;i<=p;i++){
for(int j=i;j<=p;j++){
g[i][j]=max(g[i][j],g[i-][j]);
}
}
printf("%d\n",ans);
for(int i=;i<=n;i++) printf("%d\n",g[s[i]][t[i]]);
return ;
}
1948 NOI 嘉年华的更多相关文章
- 2436: [Noi2011]Noi嘉年华 - BZOJ
Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不同的地点举办.每个嘉年华可能包含很多个活动, ...
- bzoj 2436: [Noi2011]Noi嘉年华
Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不同的地点举办.每个嘉年华可能包含很多个活动, ...
- 【BZOJ2436】【NOI2011】NOI嘉年华(动态规划)
[BZOJ2436]NOI嘉年华(动态规划) 题面 BZOJ 题解 考虑第一问如何求解 发现状态与选择了哪些活动无关,只与时间有关 设\(f[i][j]\)表示前\(i\)个单位时间(离散后),一个嘉 ...
- 【BZOJ 2436】 2436: [Noi2011]Noi嘉年华 (区间DP)
2436: [Noi2011]Noi嘉年华 Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不 ...
- luogu P1973 [NOI2011]NOI 嘉年华 dp
LINK:NOI 嘉年华 一道质量非常高的dp题目. 考虑如何求出第一问 容易想到dp. 按照左端点排序/右端点排序状态还是很难描述. 但是我们知道在时间上肯定是一次选一段 所以就可以直接利用时间点来 ...
- BZOJ 2436 Noi嘉年华(优化DP)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2436 题意:有一些活动,起始时间持续时间已知.有两个场地.每个活动最多只能在一个场地举行 ...
- NOI2011 NOI嘉年华
http://www.lydsy.com/JudgeOnline/problem.php?id=2436 首先离散化,离散化后时间范围为[1,cnt]. 求出H[i][j],表示时间范围在[i,j]的 ...
- bzoj2436: [Noi2011]Noi嘉年华
我震惊了,我好菜,我是不是该退役(苦逼) 可以先看看代码里的注释 首先我们先考虑一下第一问好了真做起来也就这个能想想了 那么离散化时间是肯定的,看一手范围猜出是二维DP,那对于两个会场,一个放自变量, ...
- BZOJ 2436 NOI嘉年华(单调优化)
http://www.lydsy.com/JudgeOnline/problem.php?id=2436 题意:两个会场不能同时表演,但是同一个时间可以同时表演,要求让两个会场表演数量最小的最大,然后 ...
随机推荐
- kill 的常用信号
kill命令用于终止指定的进程(terminate a process),是Unix/Linux下进程管理的常用命令.通常,我们在需要终止某个或某些进程时,先使用ps/pidof/pstree/top ...
- 解决spring-boot-starter-logging与log4j冲突
由于公司在super-bom里配置了检查规则,build项目时遇到错误: [ERROR] [XXX Enforcer Rules] find DuplicateClasses Found in:org ...
- laravel bald视图控制流与子视图
1:laravel 视图控制流的写法 假设控制器代码如下 $data = [ 0 => '张三', 1 => '李四', 2 => '王五' ]; return view('test ...
- 5个界面效果很炫的JavaScript UI 框架
Web 开发很简单,Web 应用的 UI 开发却很复杂,如果能够利用一些成熟的 UI 框架可以大大的减少开发的复杂度.本文向你介绍 5 款界面效果很不错的 JS 框架. 1. ExtJS ExtJS ...
- loadrunner循环执行某个动作
1.action部分定义 int i; int count; 2. 打算循环的代码前代码如下: count=rand() % 8 +1; for(i=0;i<coun ...
- tensorflow 单机多GPU mnist实例
http://blog.csdn.net/guotong1988/article/details/74748806 如何使用多GPU http://wiki.jikexueyuan.com/proje ...
- 全局结果集,带参数的结果集和动态结果集(struts2)
全局结果集: 当许多action都有共同的结果时,如果每个package都存在一个相同结果,会使得struts.xml比较臃肿,所以使用全局的结果集.一个包内的全局结果集可以通过包的继承而被其它包使用 ...
- am335x reboot 命令分析
本文记录am335x运行reboot命令时,内核中运行过程. Tony Liu, 2016-6-8, Shenzhen 参考链接: http://blog.csdn.net/wavemcu/artic ...
- BCM_SDK命令
启动bcm的sdk,会进入一个类似shell的交互界面,在其中如入命令,可以配置交换机芯片.本文主要记录一下命令: 1.端口限速命令 2.链路聚合命令 3.i2c控制命令 启动方法: /tmp/bcm ...
- 基于bootstrap的Dialog
function yms_Dialog(container_id, modal_path, handle_function) { /// <summary> /// ...