Storm-源码分析-Streaming Grouping (backtype.storm.daemon.executor)
executor在发送outbounding message的时候, 需要决定发送到next component的哪些tasks
这里就需要用到streaming grouping,
1. mk-grouper
除了direct grouping, 返回的是grouper function, 执行该grouper function得到target tasks list
direct grouping返回, :direct
(defn- mk-grouper
"Returns a function that returns a vector of which task indices to send tuple to, or just a single task index."
[^WorkerTopologyContext context component-id stream-id ^Fields out-fields thrift-grouping ^List target-tasks]
(let [num-tasks (count target-tasks)
random (Random.)
target-tasks (vec (sort target-tasks))]
(condp = (thrift/grouping-type thrift-grouping)
:fields ;;1.1 fields-grouping, 根据某个field进行grouping
(if (thrift/global-grouping? thrift-grouping) ;;1.2 fields为空时,代表global-grouping,所有tuple发到一个task
(fn [task-id tuple]
;; It's possible for target to have multiple tasks if it reads multiple sources
(first target-tasks)) ;;对于global-grouping,取排过序的第一个task, taskid最小的task
(let [group-fields (Fields. (thrift/field-grouping thrift-grouping))] ;;取出group-fields
(mk-fields-grouper out-fields group-fields target-tasks)
))
:all
(fn [task-id tuple] target-tasks) ;;1.3 all-grouping, 比较简单, 发送到所有task, 所以返回整个target-tasks
:shuffle
(mk-shuffle-grouper target-tasks) ;;1.4 shuffle-grouping
:local-or-shuffle ;;1.5 local优先, 如果目标tasks有local的则shuffle到local的tasks
(let [same-tasks (set/intersection
(set target-tasks)
(set (.getThisWorkerTasks context)))]
(if-not (empty? same-tasks)
(mk-shuffle-grouper (vec same-tasks))
(mk-shuffle-grouper target-tasks)))
:none ;;1.6 简单的版本的random,从target-tasks随机取一个
(fn [task-id tuple]
(let [i (mod (.nextInt random) num-tasks)]
(.get target-tasks i)
))
:custom-object
(let [grouping (thrift/instantiate-java-object (.get_custom_object thrift-grouping))]
(mk-custom-grouper grouping context component-id stream-id target-tasks))
:custom-serialized
(let [grouping (Utils/deserialize (.get_custom_serialized thrift-grouping))]
(mk-custom-grouper grouping context component-id stream-id target-tasks))
:direct
:direct
)))
1.1 fields-groups
使用.select取出group-fields在tuple中对应的values list, 你可以使用多个fields来进行group
使用tuple/list-hash-code, 对values list产生hash code
对num-tasks取mod, 并使用task-getter取出对应的target-tasks
(defn- mk-fields-grouper [^Fields out-fields ^Fields group-fields ^List target-tasks]
(let [num-tasks (count target-tasks)
task-getter (fn [i] (.get target-tasks i))]
(fn [task-id ^List values]
(-> (.select out-fields group-fields values)
tuple/list-hash-code
(mod num-tasks)
task-getter))))
Fields类, 除了存放fields的list, 还有个用于快速field读取的index
index的生成, 很简单, 就是记录fields以及自然排序
使用时调用select, 给出需要哪几个fields的value, 以及tuple
从index读出fields的index值, 直接从tuple中读出对应index的value (当然生成tuple的时候, 也必须安装fields的顺序生成)
public class Fields implements Iterable<String>, Serializable {
private List<String> _fields;
private Map<String, Integer> _index = new HashMap<String, Integer>(); private void index() {
for(int i=0; i<_fields.size(); i++) {
_index.put(_fields.get(i), i);
}
} public List<Object> select(Fields selector, List<Object> tuple) {
List<Object> ret = new ArrayList<Object>(selector.size());
for(String s: selector) {
ret.add(tuple.get(_index.get(s)));
}
return ret;
}
}
1.2 globle-groups
fields grouping, 但是field为空, 就代表globle grouping, 所有tuple都发送到一个task
默认选取第一个task
1.3 all-groups
发送到所有的tasks
1.4 shuffle-grouper
没有采用比较简单的直接用random取值的方式(区别于none-grouping)
因为考虑到load balance, 所以采用下面这种伪随机的实现方式
对target-tasks, 先随机shuffle, 打乱次序
在acquire-random-range-id, 会依次读所有的task, 这样保证, 虽然顺序是随机的, 但是每个task都会被选中一次
当curr越界时, 清空curr, 并从新shuffle target-tasks
(defn- mk-shuffle-grouper [^List target-tasks]
(let [choices (rotating-random-range target-tasks)]
(fn [task-id tuple]
(acquire-random-range-id choices))))
(defn rotating-random-range [choices]
(let [rand (Random.)
choices (ArrayList. choices)]
(Collections/shuffle choices rand)
[(MutableInt. -1) choices rand])) (defn acquire-random-range-id [[^MutableInt curr ^List state ^Random rand]]
(when (>= (.increment curr) (.size state))
(.set curr 0)
(Collections/shuffle state rand))
(.get state (.get curr)))
1.5 local-or-shuffle
local tasks优先选取, 并采用shuffle的方式
1.6 none-grouping
不care grouping的方式, 现在的实现就是简单的random
1.7 customing-grouping
可以自定义CustomStreamGrouping, 关键就是定义chooseTasks逻辑, 来实现自己的tasks choose策略
(defn- mk-custom-grouper [^CustomStreamGrouping grouping ^WorkerTopologyContext context ^String component-id ^String stream-id target-tasks]
(.prepare grouping context (GlobalStreamId. component-id stream-id) target-tasks)
(fn [task-id ^List values]
(.chooseTasks grouping task-id values)
))
public interface CustomStreamGrouping extends Serializable {
/**
* Tells the stream grouping at runtime the tasks in the target bolt.
* This information should be used in chooseTasks to determine the target tasks.
*
* It also tells the grouping the metadata on the stream this grouping will be used on.
*/
void prepare(WorkerTopologyContext context, GlobalStreamId stream, List<Integer> targetTasks); /**
* This function implements a custom stream grouping. It takes in as input
* the number of tasks in the target bolt in prepare and returns the
* tasks to send the tuples to.
*
* @param values the values to group on
*/
List<Integer> chooseTasks(int taskId, List<Object> values);
}
:custom-object 和:custom-serialized 的不同仅仅是, thrift-grouping是否被序列化过
没有就可以直接读出object, 否则需要反序列成object
1.8 direct-grouping
producer of the tuple decides which task of the consumer will receive this tuple.
Direct groupings can only be declared on streams that have been declared as direct streams.
这里直接返回:direct, 因为direct-grouping, 发送到哪个tasks, 是由producer产生tuple的时候已经决定了, 所以这里不需要做任何grouping相关工作
2 stream->component->grouper
outbound-components
一个executor只会对应于一个component, 所以给出当前executor的component-id
getTargets, 可以得出所有outbound components, [streamid, [target-componentid, grouping]]
调用outbound-groupings,
最终返回[streamid [component grouper]]的hashmap, 并赋值给executor-data中的stream->component->grouper
task在最终发送message的时候, 就会通过stream->component->grouper来产生真正的target tasks list
(defn outbound-components
"Returns map of stream id to component id to grouper"
[^WorkerTopologyContext worker-context component-id]
(->> (.getTargets worker-context component-id) ;;[streamid, [target-componentid, grouping]]
clojurify-structure
(map (fn [[stream-id component->grouping]]
[stream-id
(outbound-groupings
worker-context
component-id
stream-id
(.getComponentOutputFields worker-context component-id stream-id)
component->grouping)]))
(into {})
(HashMap.)))
outbound-groupings
对每个task不为空的target component调用mk-grouper
mk-grouper返回的是grouper fn, 所以, 最终的返回, [component, grouper]
(defn- outbound-groupings [^WorkerTopologyContext worker-context this-component-id stream-id out-fields component->grouping]
(->> component->grouping
(filter-key #(-> worker-context ;;component对应的tasks不为0
(.getComponentTasks %)
count
pos?))
(map (fn [[component tgrouping]]
[component
(mk-grouper worker-context
this-component-id
stream-id
out-fields
tgrouping
(.getComponentTasks worker-context component)
)]))
(into {})
(HashMap.)))
Storm-源码分析-Streaming Grouping (backtype.storm.daemon.executor)的更多相关文章
- Storm源码分析--Nimbus-data
nimbus-datastorm-core/backtype/storm/nimbus.clj (defn nimbus-data [conf inimbus] (let [forced-schedu ...
- JStorm与Storm源码分析(四)--均衡调度器,EvenScheduler
EvenScheduler同DefaultScheduler一样,同样实现了IScheduler接口, 由下面代码可以看出: (ns backtype.storm.scheduler.EvenSche ...
- JStorm与Storm源码分析(三)--Scheduler,调度器
Scheduler作为Storm的调度器,负责为Topology分配可用资源. Storm提供了IScheduler接口,用户可以通过实现该接口来自定义Scheduler. 其定义如下: public ...
- JStorm与Storm源码分析(二)--任务分配,assignment
mk-assignments主要功能就是产生Executor与节点+端口的对应关系,将Executor分配到某个节点的某个端口上,以及进行相应的调度处理.代码注释如下: ;;参数nimbus为nimb ...
- JStorm与Storm源码分析(一)--nimbus-data
Nimbus里定义了一些共享数据结构,比如nimbus-data. nimbus-data结构里定义了很多公用的数据,请看下面代码: (defn nimbus-data [conf inimbus] ...
- storm源码分析之任务分配--task assignment
在"storm源码分析之topology提交过程"一文最后,submitTopologyWithOpts函数调用了mk-assignments函数.该函数的主要功能就是进行topo ...
- storm源码分析之topology提交过程
storm集群上运行的是一个个topology,一个topology是spouts和bolts组成的图.当我们开发完topology程序后将其打成jar包,然后在shell中执行storm jar x ...
- Nimbus<三>Storm源码分析--Nimbus启动过程
Nimbus server, 首先从启动命令开始, 同样是使用storm命令"storm nimbus”来启动看下源码, 此处和上面client不同, jvmtype="-serv ...
- JStorm与Storm源码分析(五)--SpoutOutputCollector与代理模式
本文主要是解析SpoutOutputCollector源码,顺便分析该类中所涉及的设计模式–代理模式. 首先介绍一下Spout输出收集器接口–ISpoutOutputCollector,该接口主要声明 ...
随机推荐
- 每日英语:March Remembers King's Dream
President Barack Obama on Wednesday said the entire world drew strength from the March on Washington ...
- Ubuntu 12.04下mysql的安装与配置
转自:http://blog.csdn.net/ichsonx/article/details/9285935 准备 0. 获取 mysql-5.5.15-linux2.6-i686.tar.gz ...
- js在IE8+兼容String没有trim方法,写一个兼容ie8一下的浏览器的trim()方法
方法一: String.prototype.trim = function(){ return Trim(this);}; function LTrim(str) { var i; fo ...
- JDK和OpenJDK的区别
简言之,open jdk 是 oracle(sun) jdk的精简版,如果本地运行有问题,linux服务器有问题,首先排除open jdk版本的问题. 使用过LINUX的人都应该知道,在大多数LINU ...
- platform_driver_probe 函数解析
结构体列举 // 几个结构体 // include/linux/device.h struct bus_type { const char *name; // "platform" ...
- 使用maven创建工程报错Could not resolve archetype org.apache.maven.archetype
错误: Could not resolve archetype org.apache.maven.archetypes:maven-archetype-quickstart:1.1 from any ...
- [LintCode]各位相加
描述: 给出一个非负整数 num,反复的将所有位上的数字相加,直到得到一个一位的整数. 给出 num = 38. 相加的过程如下:3 + 8 = 11,1 + 1 = 2.因为 2 只剩下一个数字,所 ...
- [转]Handler学习笔记(一)
一.Handler的定义: Handler主要接收子线程发送的数据, 并用此数据配合主线程更新UI,用来跟UI主线程交互用.比如可以用handler发送一个message,然后在handler的线程中 ...
- hadoop 1.1.2和 hive 0.10 和hbase 0.94.9整合
今天弄了一下hive0.10和hbase0.94.9整合,需要设置的并不多,但是也遇到了一些问题. 1.复制jar包 拷贝hbase-0.94.9.jar,zookeeper-3.4.5.jar,pr ...
- FastDFS 安装步骤
nginx01 121nginx02 122 tracker01 131tracker02 132 storage01 141storage0 ...