题意:求

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{d|(i, j)} d 且 (\sum_{d|(i, j)} d)<=a$$

n, m<=1e5,q次询问,q<=2*1e4

#include <bits/stdc++.h>
using namespace std;
const int N=1e5+10, MN=1e5, YU=(1u<<31)-1;
int c[N], mx;
void upd(int x, int s) { for(; x<=mx; x+=x&-x) c[x]+=s; }
int sum(int x) { int r=0; for(; x; x-=x&-x) r+=c[x]; return r; } bool np[N];
int p[N], pcnt, mu[N], f[N], last[N];
void init() {
mu[1]=f[1]=1;
int i, j;
for(i=2; i<=MN; ++i) {
if(!np[i]) p[++pcnt]=i, mu[i]=-1, f[i]=1+i, last[i]=1;
for(j=1; j<=pcnt; ++j) {
int t=p[j]*i; if(t>MN) break;
np[t]=1;
if(i%p[j]==0) { mu[t]=0; f[t]=last[i]+p[j]*f[i]; last[t]=last[i]; break; }
mu[t]=-mu[i]; f[t]=f[i]*(1+p[j]);
last[t]=f[i];
}
}
}
void update(int d, int s) {
for(int i=d, j=1; i<=mx; i+=d, ++j) upd(i, s*mu[j]);
} struct A { int n, m, a, id; }q[N];
struct B { int f, id; }F[N];
inline bool cmp1(const A &a, const A &b) { return a.a<b.a; }
inline bool cmp2(const B &a, const B &b) { return a.f<b.f; } int Ans[N];
int main() {
init();
int Q; scanf("%d", &Q);
for(int i=1; i<=Q; ++i) scanf("%d %d %d", &q[i].n, &q[i].m, &q[i].a), q[i].id=i, mx=max(mx, max(q[i].n, q[i].m));
sort(q+1, q+1+Q, cmp1);
for(int i=1; i<=mx; ++i) F[i].id=i, F[i].f=f[i];
sort(F+1, F+1+mx, cmp2); int n, m, a, now=1, pos, ans;
for(int k=1; k<=Q; ++k) {
n=q[k].n, m=q[k].m, a=q[k].a; if(n>m) swap(n, m);
while(now<=mx && F[now].f<=a) update(F[now].id, F[now].f), ++now;
pos=ans=0;
for(int i=1; i<=n; i=pos+1) {
pos=min(n/(n/i), m/(m/i));
ans+=(sum(pos)-sum(i-1))*(n/i)*(m/i);
}
Ans[q[k].id]=ans&YU;
}
for(int i=1; i<=Q; ++i) printf("%d\n", Ans[i]);
return 0;
}

  

题解:

终于会了反演= = 其实不就是一个公式吗= =....我们来膜拜PoPoQQQ (http://wenku.baidu.com/view/fbec9c63ba1aa8114431d9ac.html

手推了半小时啊= =在推$f(i)$的时候竟然还不知道有约数和的公式这个玩意QAQ,感谢PoPoQQQ对我的教导,然后我根据这个玩意直接线性筛和mu一起预处理出来了...

首先我们变化一下公式,且先不考虑$<=a$这个条件,且下边均默认$n<=m$:

$$g(d) = \sum_{i=1}^{n} \sum_{j=1}^{m} [(i, j)=d]$$

$$f(d) = \sum_{i|d} i$$

那么本题可以变为枚举$gcd$,求

$$\sum_{i=1}^{n} g(i)f(i)$$

我们先来求$g(d)$(原来的博文是直接展开求的,现在我们用莫比乌斯反演来做...)

$$F(d)表示d|(i, j)的对数,而g(d)是表示(i, j)=d的对数$$

易得

$$ F(d)=
\begin{cases}
\lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor \\
\sum_{d|i} g(i) \\
\end{cases}
$$

根据莫比乌斯反演(两种形式,约数和 与 倍数和,这里是倍数和的形式,证明略),易得

$$ g(d) = \sum_{d|i} \mu (\frac{i}{d}) F(i) $$

$f(i)$的求法待会再说。那么现在我们展开之前得到的式子

$$\sum_{i=1}^{n} g(i)f(i) = \sum_{i=1}^{n} f(i) \sum_{i|T} \mu (\frac{T}{i}) F(T) = \sum_{i=1}^{n} f(i) \sum_{i|T} \mu (\frac{T}{i}) \lfloor \frac{n}{T} \rfloor \lfloor \frac{m}{T} \rfloor $$

继续换指标,我们来枚举$T$,最终可得

$$\sum_{T=1}^{n} \lfloor \frac{n}{T} \rfloor \lfloor \frac{m}{T} \rfloor \sum_{i|T} f(i) \mu (\frac{T}{i})$$

完美的公式= =

那么我们只需要求出$f(i)$然后按照倍数暴力更新即可,$O(nlnn)$(其实如果本题没有$<=a$这个条件,可以直接线性筛筛出来而不需要暴力枚举,详细请见我之前的博文http://www.cnblogs.com/iwtwiioi/p/4132095.html

那么考虑当有$<=a$这个条件了,发现其实就是$f(i)<=a$,那么发现其实只需要排序一下,然后用个bit动态维护前缀和即可,最终查询用分块。

复杂度$O(nlogn+qn^{0.5}log n)$

最后来说$f(i)$的线性求法...

由于

$$f(i) = \prod_{i} \sum_{j=0}^{a[i]} p_{i}^{j},a[i]表示指数数目$$

我们考虑$f(kp_y)$,即线性筛里边的外层循环$k$和内层循环$p_y$

当$p_y | k$时

$$f(kp_y) = \prod_{i} \sum_{j=0}^{a[i]} p_{i}^{j}$$

我们在$p_y$那个指数提取一个出来,则那一部分的和变成$p_y \sum_{j=-1}^{a[y]-1} p_{y}^{j}$,将指数为$-1$的一起提出来,最终整理得

$$f(kp_y) = \prod_{i \neq y} \sum_{j=0}^{a[i]} p_{i}^{j} + p_y \prod_{i} \sum_{j=0}^{a[i]或当i=y时, a[y]-1} p_{i}^{j} = f(k去除所有p_y因子) + p_y f(k)$$

当$p_y \nmid k$时,好算多了...直接可推得

$$f(kp_y) = (1+p_y)f(k)$$

那么就大胆放到线性筛里去求吧!

【BZOJ】3529: [Sdoi2014]数表的更多相关文章

  1. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  2. bzoj 3529 [Sdoi2014]数表(莫比乌斯反演+BIT)

    Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a ...

  3. ●BZOJ 3529 [Sdoi2014]数表

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3529 题解: 莫比乌斯反演. 按题目的意思,令$f(i)$表示i的所有约数的和,就是要求: ...

  4. 【刷题】BZOJ 3529 [Sdoi2014]数表

    Description 有一张n×m的数表,其第i行第j列(1<=i<=n,1<=j<=m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. In ...

  5. BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)

    题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...

  6. bzoj 3529: [Sdoi2014]数表

    #include<cstdio> #include<iostream> #include<algorithm> #define M 200009 //#define ...

  7. BZOJ 3529 [Sdoi2014]数表 ——莫比乌斯反演 树状数组

    $ans=\sum_{i=1}^n\sum_{j=1}^n\sigma(gcd(i,j))$ 枚举gcd为d的所有数得到 $ans=\sum_{d<=n}\sigma(d)*g(d)$ $g(d ...

  8. BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2321  Solved: 1187[Submit][Status ...

  9. 3529: [Sdoi2014]数表 - BZOJ

    Description 有一张N×m的数表,其第i行第j列(1 < =i < =n,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a ...

随机推荐

  1. Jquery自定义扩展方法(二)--HTML日历控件

    一.概述 研究了上节的Jquery自定义扩展方法,自己一直想做用jquery写一个小的插件,工作中也用到了用JQuery的日历插件,自己琢磨着去造个轮子--HTML5手机网页日历控件,废话不多说,先看 ...

  2. Web框架之Tornado

    概述 Tornado 是 FriendFeed 使用的可扩展的非阻塞式 web 服务器及其相关工具的开源版本.这个 Web 框架看起来有些像web.py 或者 Google 的 webapp,不过为了 ...

  3. float 的有效数字为七位是怎么得出来的

    以下内容来自CSDN网友xian_wwq的回答(http://bbs.csdn.net/topics/390874239): float:   1bit(符号位) 8bits(指数位) 23bits( ...

  4. freemarker 实现对URL的安全编码

    [#setting url_escaping_charset='utf-8'] ${yourstr?url}

  5. jQuery easyUI datagrid 增加求和统计行 分类: JavaScript 2015-01-14 17:46 2178人阅读 评论(0) 收藏

    在datagrid的onLoadSuccess事件增加代码处理. <style type="text/css"> .subtotal { font-weight: bo ...

  6. php开启mysqli扩展之后如何连接数据库

    Mysqli是php5之后才有的功能,没有开启扩展的朋友可以打开您的php.ini的配置文件;相对于mysql有很多新的特性和优势,需要了解的朋友可以参考下 Mysqli是php5之后才有的功能,没有 ...

  7. mysql_multi启动数据库

    1.初始化数据库 在$mysql_base目录下,新增加存放data的文件夹,用mysql_install_db命令执行初始化 [root@ora11g scripts]# ./mysql_insta ...

  8. Linux内核分析--操作系统是如何工作的

    “平安的祝福 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 ” 一.初 ...

  9. 对于JSP的调试

    在eclipse中调试JSP 我换了图片但是网页中的图片却不变化 我删了工程里的图片还是没用 看了一下Tomcat根目录..貌似也是没有的.. 最后我考虑换了HTML中图片的名字..并且更改了替换的图 ...

  10. HDU 5769 后缀数组

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5769 [2016多校contest-4] 题意:给定一个字符,还有一个字符串,问这个字符串存在多少个不 ...