模板:

int p[MAXN],pcnt=0,mu[MAXN];
bool notp[MAXN];
void shai(int n){
mu[1]=1;
for(int i=2;i<=n;++i){
if (notp[i]==0){
p[++pcnt]=i;
mu[i]=-1;
}
for (int j=1,t=p[j]*i;j<=pcnt&&t<=n;++j,t=p[j]*i){
notp[t]=1;
if (i%p[j]==0){
mu[i]=0;
break;
}else
mu[i*p[j]]=-mu[i];
}
}
}

$\mu(d)$函数的定义如下:

  (1)若,那么

  (2)若均为互异素数,那么

  (3)其它情况下

对任意正整数n有

     (很重要!!!)

     (有用吗 (╯°Д°)╯︵ ┻━┻,还是记一记吧)

对于莫比乌斯反演:

$$F(n) = \sum_{d|n} f(d)$$

结论:

$$f(n) = \sum_{d|n} \mu(d) F(\frac{n}{d})$$

证明(真心简洁):

$$\sum_{d|n} \mu(d) F(\frac{n}{d}) = \sum_{d|n} \mu(d) \sum_{d'|{\frac{n}{d}}} f(d') = \sum_{d'|n} f(d') \sum_{d|{\frac{n}{d'}}} \mu(d) = f(n)$$

莫比乌斯函数筛法 & 莫比乌斯反演的更多相关文章

  1. bzoj 2440 完全平方数 【莫比乌斯函数】

    题目 题意:第Ki 个不是完全平方数的正整数倍的数. 对于一个数t,t以内的数里的非完全平方数倍数的个数:num=1的倍数的数量−一个质数平方数(9,25,49...)的倍数的数量+两个质数的积平方数 ...

  2. 51nod 1244 莫比乌斯函数之和 【杜教筛】

    51nod 1244 莫比乌斯函数之和 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号.具体定义如下: 如果一个数包含 ...

  3. BZOJ 1101 莫比乌斯函数+分块

    思路: 题目中的gcd(x,y)=d (x<=a,y<=b)可以转化成 求:gcd(x,y)=1 (1<=x<=a/d 1<=y<=b/d) 设 G(x,y)表示x ...

  4. 莫比乌斯函数&莫比乌斯反演

    莫比乌斯函数:http://wenku.baidu.com/view/fbec9c63ba1aa8114431d9ac.html Orz  PoPoQQQ

  5. HDU 6053 TrickGCD 莫比乌斯函数/容斥/筛法

    题意:给出n个数$a[i]$,每个数可以变成不大于它的数,现问所有数的gcd大于1的方案数.其中$(n,a[i]<=1e5)$ 思路:鉴于a[i]不大,可以想到枚举gcd的值.考虑一个$gcd( ...

  6. hdu 1965 (莫比乌斯函数 莫比乌斯反演)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  7. 【bzoj4804】欧拉心算 莫比乌斯反演+莫比乌斯函数性质+线性筛

    Description 给出一个数字N 求\(\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(gcd(i,j))\) Input 第一行为一个正整数T,表示数据组数. 接下来T ...

  8. 【bzoj3601】一个人的数论 莫比乌斯反演+莫比乌斯函数性质+高斯消元

    Description Sol 这题好难啊QAQ 反正不看题解我对自然数幂求和那里是一点思路都没有qwq 先推出一个可做一点的式子: \(f(n)=\sum_{k=1}^{n}[(n,k)=1]k^d ...

  9. 51nod 1244 莫比乌斯函数之和

    题目链接:51nod 1244 莫比乌斯函数之和 题解参考syh学长的博客:http://www.cnblogs.com/AOQNRMGYXLMV/p/4932537.html %%% 关于这一类求积 ...

随机推荐

  1. Codeforces Round #282 Div.1 B Obsessive String --DP

    题意: 给两个串S,T,问能找出多少的S的(a1,b1)(a2,b2)..(ak,bk),使Sa1---Sb1,...Sak---Sbk都包含子串T,其中k>=1,且(a1,b1)...(ak, ...

  2. vector3.forward和transform.forward的区别!

    http://blog.163.com/bowen_tong/blog/static/20681717420146654927791/ vector3.forward和transform.forwar ...

  3. Java中的链表数据结构

    首先,我们来定义一个链表的数据结构,如下: 1 public class Link { 2 private int value; 3 private Link next; 4 public void ...

  4. 使用uboot的tftp下载bootloader、内核、文件系统

    开发板 jz2440 下载uboot.bin tftp 0x30000000 u-boot.bin nand erase bootloader nand write bootloader 下载内核 t ...

  5. JavaWeb学习总结,文件上传和下载

    在Web应用系统开发中,文件上传和下载功能是非常常用的功能,今天来讲一下JavaWeb中的文件上传和下载功能的实现. 对于文件上传,浏览器在上传的过程中是将文件以流的形式提交到服务器端的,如果直接使用 ...

  6. [No000020]背单词提不起兴趣怎么办?

  7. java 22 - 11 多线程之模拟电影院售票口售票

    使用多线程实现的第二种方式: 首先创建自定义类 public class SellTicket implements Runnable { // 定义100张票 private int ticket ...

  8. LinkedList子类与Queue接口

    LinkedList表示的是一个链表的操作类.定义如下: public class LinkedList<E> extends AbstractSequentialList<E> ...

  9. addClass, removeClass, toggleClass(从jquery中抠出来)

    <div id="d3" class="cur"></div> var mylibs = (function(){ var rtrim ...

  10. python实现一个图灵机器人

    这标题就是个噱头...其实用的别人的接口,就是这货. 下面是代码: # -*- coding: utf-8 -*- import urllib,urllib2 import sys import js ...