莫比乌斯函数筛法 & 莫比乌斯反演
模板:
int p[MAXN],pcnt=0,mu[MAXN];
bool notp[MAXN];
void shai(int n){
mu[1]=1;
for(int i=2;i<=n;++i){
if (notp[i]==0){
p[++pcnt]=i;
mu[i]=-1;
}
for (int j=1,t=p[j]*i;j<=pcnt&&t<=n;++j,t=p[j]*i){
notp[t]=1;
if (i%p[j]==0){
mu[i]=0;
break;
}else
mu[i*p[j]]=-mu[i];
}
}
}
$\mu(d)$函数的定义如下:
(1)若,那么
(2)若,
均为互异素数,那么
(3)其它情况下
对任意正整数n有
(很重要!!!)
(有用吗 (╯°Д°)╯︵ ┻━┻,还是记一记吧)
对于莫比乌斯反演:
$$F(n) = \sum_{d|n} f(d)$$
结论:
$$f(n) = \sum_{d|n} \mu(d) F(\frac{n}{d})$$
证明(真心简洁):
$$\sum_{d|n} \mu(d) F(\frac{n}{d}) = \sum_{d|n} \mu(d) \sum_{d'|{\frac{n}{d}}} f(d') = \sum_{d'|n} f(d') \sum_{d|{\frac{n}{d'}}} \mu(d) = f(n)$$
莫比乌斯函数筛法 & 莫比乌斯反演的更多相关文章
- bzoj 2440 完全平方数 【莫比乌斯函数】
题目 题意:第Ki 个不是完全平方数的正整数倍的数. 对于一个数t,t以内的数里的非完全平方数倍数的个数:num=1的倍数的数量−一个质数平方数(9,25,49...)的倍数的数量+两个质数的积平方数 ...
- 51nod 1244 莫比乌斯函数之和 【杜教筛】
51nod 1244 莫比乌斯函数之和 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号.具体定义如下: 如果一个数包含 ...
- BZOJ 1101 莫比乌斯函数+分块
思路: 题目中的gcd(x,y)=d (x<=a,y<=b)可以转化成 求:gcd(x,y)=1 (1<=x<=a/d 1<=y<=b/d) 设 G(x,y)表示x ...
- 莫比乌斯函数&莫比乌斯反演
莫比乌斯函数:http://wenku.baidu.com/view/fbec9c63ba1aa8114431d9ac.html Orz PoPoQQQ
- HDU 6053 TrickGCD 莫比乌斯函数/容斥/筛法
题意:给出n个数$a[i]$,每个数可以变成不大于它的数,现问所有数的gcd大于1的方案数.其中$(n,a[i]<=1e5)$ 思路:鉴于a[i]不大,可以想到枚举gcd的值.考虑一个$gcd( ...
- hdu 1965 (莫比乌斯函数 莫比乌斯反演)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- 【bzoj4804】欧拉心算 莫比乌斯反演+莫比乌斯函数性质+线性筛
Description 给出一个数字N 求\(\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(gcd(i,j))\) Input 第一行为一个正整数T,表示数据组数. 接下来T ...
- 【bzoj3601】一个人的数论 莫比乌斯反演+莫比乌斯函数性质+高斯消元
Description Sol 这题好难啊QAQ 反正不看题解我对自然数幂求和那里是一点思路都没有qwq 先推出一个可做一点的式子: \(f(n)=\sum_{k=1}^{n}[(n,k)=1]k^d ...
- 51nod 1244 莫比乌斯函数之和
题目链接:51nod 1244 莫比乌斯函数之和 题解参考syh学长的博客:http://www.cnblogs.com/AOQNRMGYXLMV/p/4932537.html %%% 关于这一类求积 ...
随机推荐
- GNU make规则的命令④书写命令
命令回显 通常, make 在执行命令行之前会把要执行的命令行输出到标准输出设备.我们称之为"回显",就好像我们在 shell 环境下输入命令执行时一样. 如果规则的命令行以字符& ...
- oracl函数
一:大小写函数 1:lower()全部小写 select lower('HEHE') lowerwords from dual 2:upper()全部大写 3:initcap()首字母大写 4:con ...
- Oracle job procedure 存储过程定时任务
Oracle job procedure 存储过程定时任务 oracle job有定时执行的功能,可以在指定的时间点或每天的某个时间点自行执行任务. 一.查询系统中的job,可以查询视图 --相关视图 ...
- http协议.md
该文转自:HTTP协议详解 HTTP协议详解 引言 超文本传输协议(HTTP,HyperText Transfer Protocol)是互联网上应用最为广泛的一种网络协议.所有的WWW文件都必须遵守这 ...
- Javascript 代码格式化(JsFormat)
JsFormat 在GitHub 上的地址: https://github.com/jdc0589/JsFormat 这是一个sublime text 2 的插件. 安装: 先安装 sublime p ...
- BZOJ 1009 【HNOI2008】 GT考试
Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0< ...
- POJ 3714 Raid
Description After successive failures in the battles against the Union, the Empire retreated to its ...
- Linux 进程详解
Linux内核的七大区间 .进程管理(进程创建,进程的三种状态,进程间的调度,调度算法...) .内存管理(段式管理(Linux所有段都从0开始),页式管理--地址偏移量) .系统调用(C语言库函数的 ...
- scala 学习笔记(06) OOP(下)多重继承 及 AOP
一.多继承 上篇trait中,已经看到了其用法十分灵活,可以借此实现类似"多重继承"的效果,语法格式为: class/trait A extends B with C with D ...
- scala 学习笔记(05) OOP(中)灵活的trait
trait -- 不仅仅只是接口! 接上回继续,scala是一个非常有想法的语言,从接口的设计上就可以发现它的与众不同.scala中与java的接口最接近的概念是trait,见下面的代码: packa ...