商最多有sqrt(n)个。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long
using namespace std;
int n,k;
signed main()
{
scanf("%lld%lld",&n,&k);
int ans=n*k;if(n>k)n=k;
int l,r,j;
for(int i=;i<=n;i=r+)
{
int y=k/i;r=k/y;
if(r>n)r=n;
ans-=y*(r-i+)*(i+r)/;
}
printf("%lld\n",ans);
return ;
}

bzoj 1257的更多相关文章

  1. [BZOJ 1257] [CQOI2007] 余数之和sum 【数学】

    题目链接:BZOJ - 1257 题目分析 首先, a % b = a - (a/b) * b,那么答案就是 sigma(k % i) = n * k - sigma(k / i) * i     ( ...

  2. Bzoj 1257 [CQOI2007]余数之和 (整除分块)

    Bzoj 1257 [CQOI2007]余数之和 (整除分块) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 一道简单题. 题目 ...

  3. BZOJ 1257: [CQOI2007]余数之和sum

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 3769  Solved: 1734[Submit][St ...

  4. BZOJ 1257 余数之和sum

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1257 题意:计算sigama(m%i)(1<=i<=n). 思路: 这样就简 ...

  5. [原博客] BZOJ 1257 [CQOI2007] 余数之和

    题目链接题意: 给定n,k,求 ∑(k mod i) {1<=i<=n} 其中 n,k<=10^9. 即 k mod 1 + k mod 2 + k mod 3 + … + k mo ...

  6. bzoj 1257: [CQOI2007]余数之和sum 数学 && 枚举

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 1779  Solved: 823[Submit][Sta ...

  7. BZOJ 1257 余数之和

    Description 给出正整数\(n\)和\(k\),计算\(j(n, k)=k\;mod\;1\;+\;k\;mod\;2\;+\;k\;mod\;3\;+\;-\;+\;k\;mod\;n\) ...

  8. BZOJ 1257: [CQOI2007]余数之和sum( 数论 )

    n >= k 部分对答案的贡献为 k * (n - k) n < k 部分贡献为 ∑ (k - ⌊k / i⌋ * i)  = ∑  , ⌊k / i⌋ 相等的数是连续的一段, 此时这段连 ...

  9. BZOJ 1257: [CQOI2007]余数之和sum【神奇的做法,思维题】

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 4474  Solved: 2083[Submit][St ...

  10. BZOJ 1257 - 余数之和 - [CQOI2007]

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 题意: 给定正整数 $n,k$,求 $(k \bmod 1) + (k \bmod ...

随机推荐

  1. Python的高级特性5:谈谈python的动态属性

    正常情况下,当我们定义了一个class,创建了一个class的实例后,我们可以给该实例绑定任何属性和方法,这就是动态语言的灵活性. 看下面一种常见的get/set操作 In [174]: class ...

  2. xhprof使用笔记(非原创)

    [作用] xhprof是facebook开源的一个php性能分析工具. [安装] xhprof扩展的安装: wget   http://pecl.php.net/get/xhprof-0.9.2.tg ...

  3. Structs2配置文件相关说明

    1,structs.xml文件解析 <package name="front" namespace="/front" extends="stru ...

  4. 史上最全的CSS hack方式一览

    做前端多年,虽然不是经常需要hack,但是我们经常会遇到各浏览器表现不一致的情况.基于此,某些情况我们会极不情愿的使用这个不太友好的方式来达到大家要求的页面表现.我个人是不太推荐使用hack的,要知道 ...

  5. 花生壳动态IP域名解析之python自动提交公网IP

    #!/usr/bin/env python import re import os import time import random ip_current = '' while True: myip ...

  6. BZOJ 1030 【JSOI2007】 文本生成器

    Description JSOI交给队员ZYX一个任务,编制一个称之为"文本生成器"的电脑软件:该软件的使用者是一些低幼人群,他们现在使用的是GW文本生成器v6版.该软件可以随机生 ...

  7. servlet 中文乱码问题

    两步骤搞定: 1,修改tomcat的server.xml <Connector port="8080" protocol="HTTP/1.1" conne ...

  8. Protocol https not supported or disabled in libcurl

    最后用PHP Curl 模拟访问HTTPS ,总是得到 Protocol https not supported or disabled in libcurl 错误,奇怪了,找了很多资料,有人说没有开 ...

  9. LINQ 查询表达式(C# 编程指南)

    语言集成查询 (LINQ) 是一组技术的名称,这些技术建立在将查询功能直接集成到 C# 语言(以及 Visual Basic 和可能的任何其他 .NET 语言)的基础上.  借助于 LINQ,查询现在 ...

  10. hadoop1.2.1伪分布模式配置

    1.修改core-site.xml,配置hdfs <configuration> <property> <name>fs.default.name</name ...