Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Problem Description
Hearthstone
is an online collectible card game from Blizzard Entertainment.
Strategies and luck are the most important factors in this game. When
you suffer a desperate situation and your only hope depends on the top
of the card deck, and you draw the only card to solve this dilemma. We
call this "Shen Chou Gou" in Chinese.

Now
you are asked to calculate the probability to become a "Shen Chou Gou"
to kill your enemy in this turn. To simplify this problem, we assume
that there are only two kinds of cards, and you don't need to consider
the cost of the cards.

  • A-Card: If the card deck contains less than
    two cards, draw all the cards from the card deck; otherwise, draw two
    cards from the top of the card deck.
  • B-Card: Deal X damage to your enemy.

Note that different B-Cards may have different X values.
At
the beginning, you have no cards in your hands. Your enemy has P Hit
Points (HP). The card deck has N A-Cards and M B-Cards. The card deck
has been shuffled randomly. At the beginning of your turn, you draw a
card from the top of the card deck. You can use all the cards in your
hands until you run out of it. Your task is to calculate the probability
that you can win in this turn, i.e., can deal at least P damage to your
enemy.

 
Input
The first line is the number of test cases T (T<=10).
Then
come three positive integers P (P<=1000), N and M (N+M<=20),
representing the enemy’s HP, the number of A-Cards and the number of
B-Cards in the card deck, respectively. Next line come M integers
representing X (0<X<=1000) values for the B-Cards.
 
Output
For
each test case, output the probability as a reduced fraction (i.e., the
greatest common divisor of the numerator and denominator is 1). If the
answer is zero (one), you should output 0/1 (1/1) instead.
 
Sample Input
2
3 1 2
1 2
3 5 10
1 1 1 1 1 1 1 1 1 1
 
Sample Output
1/3
46/273
 
Author
SYSU
 
Source

Solution:
状压DP.
我第一次设计的DP状态是:
$\text{dp}[s][i]:$ 当前已经抽得的卡的集合是 $s$, 还剩下 $i$ 次抽卡机会的方案数.
但是超内存了……算了一下, 发现这个 $\text{dp}$ 数组确实开不下, 后来想到 $i$ 只和 $s$ 有关, 也就意味着根本不需要 $\text{dp}$ 的第二维.
设 $s$ 中有 $x$ 张A-Card, $y$ 张B-Card, 那么剩余的抽卡次数就是 $2x+1-(x+y) = x-y+1$ ,但是这样改过之后就陷入了无尽的超时,这个做法的复杂度是 $O((m+n)2^{m+n})$ ,竟然卡常数……

我第一发 TLE 的 NAIVE 写法:

#include <bits/stdc++.h>
using namespace std; typedef long long LL; const int N{};
int T, n, m, p;
int a[N]; LL dp[<<]; int calc(int s){
int res=;
for(int i=; i<m; i++)
if(s&<<i) res+=a[i];
return res;
} int ones(int s){
int res=;
for(int i=; i<n+m; i++)
res+=bool(s&<<i);
return res;
} int r(int s){
int x=, y=;
for(int i=; i<(n+m); i++)
if(s&<<i){
x++;
if(i>=m) y++;
}
return *y+-x;
} // int main(){ LL f[N]{};
for(int i=; i<N; i++)
f[i]=f[i-]*i; for(cin>>T; T--; ){
cin>>p>>n>>m;
for(int i=; i<m; i++)
cin>>a[i]; int tot=m+n; memset(dp, , sizeof(dp));
dp[]=; for(int s=; s<<<tot; s++)
if(dp[s] &&r(s)>)
for(int j=; j<tot; j++)
if(!(s&<<j))
dp[s|<<j]+=dp[s]; LL res=;
int full=(<<tot)-; for(int s=; s<<<tot; s++)
if(calc(s)>=p && (r(s)== || s==full))
res+=dp[s]*f[tot-ones(s)]; // cout<<res<<endl; LL gcd=__gcd(res, f[tot]);
printf("%lld/%lld\n", res/gcd, f[tot]/gcd);
}
}
最后一发TLE的写法:
#include <bits/stdc++.h>
using namespace std; typedef long long LL; const int N{<<};
int T, n, m, p; int a[N], ones[<<]; LL dp[<<], f[N]{}; inline int calc(int s){
int res=;
for(int i=; i<m; i++)
if(s&<<i) res+=a[i];
return res;
} inline int r(int s){
int res=;
for(int i=; i<m; i++)
res+=bool(s&<<i);
// return 2*(ones[s]-res)+1-ones[s];
return ones[s]-(res<<)+;
} // int main(){ for(int i=; i<<<; i++)
for(int j=; j<; j++)
if(i&<<j) ones[i]++; for(int i=; i<N; i++)
f[i]=f[i-]*i; for(scanf("%d", &T); T--; ){
scanf("%d%d%d", &p, &n, &m);
for(int i=; i<m; i++)
scanf("%d", a+i); // LL res=0; int tot=m+n;
LL res=, full=(<<tot)-; if(calc(full)>=p){ memset(dp, , sizeof(dp));
dp[]=;
for(int s=; s<<<tot; s++)
if(dp[s])
if(r(s)== || s==full){
if(calc(s)>=p) res+=dp[s]*f[tot-ones[s]];
}
else{
for(int j=; j<tot; j++)
if(!(s&<<j))
dp[s|<<j]+=dp[s];
}
} LL gcd=__gcd(res, f[tot]);
printf("%lld/%lld\n", res/gcd, f[tot]/gcd);
}
}

这个写法赛后在题库中AC了, 跑了907ms...

AC的姿势:

#include <bits/stdc++.h>
using namespace std; typedef long long LL; const int N{<<};
int T, n, m, p; int a[N], ones[<<]; LL dp[<<], f[N]{}; inline int calc(int s){
int res=;
for(int i=; i<m; i++)
if(s&<<i) res+=a[i];
return res;
} inline int r(int s){
int res=;
for(int i=; i<m; i++)
res+=bool(s&<<i);
// return 2*(ones[s]-res)+1-ones[s];
return ones[s]-(res<<)+;
} // int main(){ for(int i=; i<<<; i++)
for(int j=; j<; j++)
if(i&<<j) ones[i]++; for(int i=; i<N; i++)
f[i]=f[i-]*i; for(scanf("%d", &T); T--; ){
scanf("%d%d%d", &p, &n, &m); for(int i=; i<m; i++)
scanf("%d", a+i); // LL res=0; int tot=m+n;
LL res=, full=(<<tot)-; if(calc(full)>=p){
memset(dp, , sizeof(dp));
dp[]=;
for(int s=; s<<<tot; s++)
if(dp[s])
if(calc(s)>=p) res+=dp[s]*f[tot-ones[s]];
else if(r(s)>)
for(int j=; j<tot; j++)
if(!(s&<<j))
dp[s|<<j]+=dp[s];
} LL gcd=__gcd(res, f[tot]);
printf("%lld/%lld\n", res/gcd, f[tot]/gcd);
}
}

这个跑了358ms.

Conclusion:

1. 剪枝

2. 预处理 $\text{ones}$ 表, $\mathrm{ones}[i]$ 表示 $i$ 的二进制表达式中$1$的个数.


这题应该还有复杂度更优的做法, 之后再补充.

 
 

HDU 5816 Hearthstone的更多相关文章

  1. HDU 5816 Hearthstone 概率dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5816 Hearthstone Time Limit: 2000/1000 MS (Java/Othe ...

  2. HDU 5816 Hearthstone (状压DP)

    Hearthstone 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5816 Description Hearthstone is an onlin ...

  3. HDU 5816 状压DP&排列组合

    ---恢复内容开始--- Hearthstone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java ...

  4. HDU5816 Hearthstone(状压DP)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5816 Description Hearthstone is an online collec ...

  5. HDOJ 2111. Saving HDU 贪心 结构体排序

    Saving HDU Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  6. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  7. hdu 4859 海岸线 Bestcoder Round 1

    http://acm.hdu.edu.cn/showproblem.php?pid=4859 题目大意: 在一个矩形周围都是海,这个矩形中有陆地,深海和浅海.浅海是可以填成陆地的. 求最多有多少条方格 ...

  8. HDU 4569 Special equations(取模)

    Special equations Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  9. HDU 4006The kth great number(K大数 +小顶堆)

    The kth great number Time Limit:1000MS     Memory Limit:65768KB     64bit IO Format:%I64d & %I64 ...

随机推荐

  1. .clear 万能清除浮动

    html body div.clear, html body span.clear { background: none; border: 0; clear: both; display: block ...

  2. Orchard创建全局应用

    Orchard的本地化管理托管于一个外部服务(Crowdin),这个项目是公开的且欢迎大家做贡献. Orchard支持两种类型的本地: Orchard应用程序以及已安装模块中的文本字符串的本地化(其实 ...

  3. jQuery.uploadify-----文件上传带进度条,支持多文件上传的插件

    借鉴别人总结的uploadify:基于jquery的文件上传插件,支持ajax无刷新上传,多个文件同时上传,上传进行进度显示,控制文件上传大小,删除已上传文件. uploadify有两个版本,一个用f ...

  4. Bootstrap系列 -- 41. 带表单的导航条

    有的导航条中会带有搜索表单,在Bootstrap框架中提供了一个“navbar-form”,使用方法很简单,在navbar容器中放置一个带有navbar-form类名的表单.navbar-left”让 ...

  5. 高仿Windows Phone QQ登录界面

    给 TextBox文本框前添加图片 扩展PhoneTextBox:添加一个类"ExtentPhoneTextBox"继承 PhoneTextBox ,在"ExtentPh ...

  6. js的单引号,双引号,转移符

    这里我们看到想在style后边在插入一个样式的变量,data.cssSytle.a是做边和邮编都是"",并且没有转移符

  7. 【转】XSD (xml Schema Definition)

    来自:http://www.cnblogs.com/newsouls/archive/2011/10/28/2227765.html Xml Schema的用途 1.  定义一个Xml文档中都有什么元 ...

  8. Java--剑指offer(9)

    41.输出所有和为S的连续正数序列.序列内按照从小至大的顺序,序列间按照开始数字从小到大的顺序 import java.util.ArrayList; public class Solution { ...

  9. C# 多线程join的用法,等待多个子线程结束后再执行主线程

    等待多个子线程结束后再执行主线程 class MultiThread{ #region join test public void MultiThreadTest() { Thread[] ths = ...

  10. [转]Spring注解原理的详细剖析与实现

    原文地址:http://freewxy.iteye.com/blog/1149128/ 本文主要分为三部分: 一.注解的基本概念和原理及其简单实用 二.Spring中如何使用注解 三.编码剖析spri ...