python数据结构与算法——图的最短路径(Floyd-Warshall算法)
使用Floyd-Warshall算法 求图两点之间的最短路径
不允许有负权边,时间复杂度高,思路简单
# 城市地图(字典的字典)
# 字典的第1个键为起点城市,第2个键为目标城市其键值为两个城市间的直接距离
# 将不相连点设为INF,方便更新两点之间的最小值
INF = 99999
G = {1:{1:0, 2:2, 3:6, 4:4},
2:{1:INF, 2:0, 3:3, 4:INF},
3:{1:7, 2:INF, 3:0, 4:1},
4:{1:5, 2:INF, 3:12, 4:0}
} # 算法思想:
# 每个顶点都有可能使得两个顶点之间的距离变短
# 当两点之间不允许有第三个点时,这些城市之间的最短路径就是初始路径 # Floyd-Warshall算法核心语句
# 分别在只允许经过某个点k的情况下,更新点和点之间的最短路径
for k in G.keys(): # 不断试图往两点i,j之间添加新的点k,更新最短距离
for i in G.keys():
for j in G[i].keys():
if G[i][j] > G[i][k] + G[k][j]:
G[i][j] = G[i][k] + G[k][j] for i in G.keys():
print G[i].values()
结果:
[0, 2, 5, 4]
[9, 0, 3, 4]
[6, 8, 0, 1]
[5, 7, 10, 0]
python数据结构与算法——图的最短路径(Floyd-Warshall算法)的更多相关文章
- python数据结构与算法——图的最短路径(Dijkstra算法)
# Dijkstra算法——通过边实现松弛 # 指定一个点到其他各顶点的路径——单源最短路径 # 初始化图参数 G = {1:{1:0, 2:1, 3:12}, 2:{2:0, 3:9, 4:3}, ...
- python数据结构与算法——图的最短路径(Bellman-Ford算法)解决负权边
# Bellman-Ford核心算法 # 对于一个包含n个顶点,m条边的图, 计算源点到任意点的最短距离 # 循环n-1轮,每轮对m条边进行一次松弛操作 # 定理: # 在一个含有n个顶点的图中,任意 ...
- 7-8 哈利·波特的考试(25 分)(图的最短路径Floyd算法)
7-8 哈利·波特的考试(25 分) 哈利·波特要考试了,他需要你的帮助.这门课学的是用魔咒将一种动物变成另一种动物的本事.例如将猫变成老鼠的魔咒是haha,将老鼠变成鱼的魔咒是hehe等等.反方向变 ...
- 数据结构与算法-图的最短路径Dijkstra
一 无向图单源最短路径,Dijkstra算法 计算源点a到图中其他节点的最短距离,是一种贪心算法.利用局部最优,求解全局最优解. 设立一个visited访问和dist距离数组,在初始化后每一次收集一 ...
- 算法-图(2)Bellman-Ford算法求最短路径
template <class T,class E> void Bellman-Ford(Graph<T,E>&G, int v, E dist[], int path ...
- Floyd—Warshall算法
我们用DP来求解任意两点间的最短路问题 首先定义状态:d[k][i][k]表示使用顶点1~k,i,j的情况下,i到j的最短路径 (d[0][i][j]表示只使用i和j,因此d[0][i][j] = c ...
- python数据结构与算法
最近忙着准备各种笔试的东西,主要看什么数据结构啊,算法啦,balahbalah啊,以前一直就没看过这些,就挑了本简单的<啊哈算法>入门,不过里面的数据结构和算法都是用C语言写的,而自己对p ...
- 图论之最短路径(1)——Floyd Warshall & Dijkstra算法
开始图论学习的第二部分:最短路径. 由于知识储备还不充足,暂时不使用邻接表的方法来计算. 最短路径主要分为两部分:多源最短路径和单源最短路径问题 多源最短路径: 介绍最简单的Floyd Warshal ...
- c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法
c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法 图的最短路径的概念: 一位旅客要从城市A到城市B,他希望选择一条途中中转次数最少的路线.假设途中每一站都需要换车,则这个问题反映到图上就是 ...
随机推荐
- Kth Largest Element in an Array - LeetCode
examination questions Find the kth largest element in an unsorted array. Note that it is the kth lar ...
- 堆排序(C++实现)
#include<iostream> #include<vector> using namespace std; void swap(vector<int> &am ...
- html5 drag and drop
注:链接.图片默认是draggable的. mousemove在整个拖放的过程中不会被触发. dragStart设置: e.dataTransfer.effectAllowed = "mov ...
- 12款最佳Linux命令行终端工具, 20款优秀的 Linux 终端仿真器
12款最佳Linux命令行终端工具 如果你跟我一样,整天要花大量的时间使用Linux命令行,而且正在寻找一些可替代系统自带的老旧且乏味的终端软件,那你真是找对了文章.我这里搜集了一些非常有趣的 ...
- $.ajax()常用方法详解(推荐)
AJAX 是一种与服务器交换数据的技术,可以在补充在整个页面的情况下更新网页的一部分.接下来通过本文给大家介绍ajax一些常用方法,大家有需要可以一起学习. 1.url: 要求为String类型的参数 ...
- Android Fragment是什么
Fragment是Activity中用户界面的一个行为或者一个部分.你可以在一个单独的Activity上把多个Fragment组合成一个多区域的UI,并且可以在多个Activity中使用.你可以认为F ...
- Hibernate疑问
官方User_guide中,3.2节 JPA Bootstrapping 第一段最后一句话, The standardized approach has some limitations in cer ...
- nginx 负载均衡策略
nginx 负载均衡策略 1. 轮询轮询方式是nginx负载均衡的默认策略,根据每个server的权重值来轮流发送请求,例如:upstream backend {server backend1.e ...
- iOS开发 利用Reachability判断网络环境
导入头文件:#import "Reachability.h" 然后将 SystemConfiguration.framework 添加进工程: 1.检查当前的网络状态(wifi.W ...
- Karma Police - Radiohead
音乐赏析似乎是一件没有意义的工作,与电影相比音乐更加抽象,不同的人对同一首歌会有完全不同的解读. 但一首歌一旦成为经典,就有解读它的必要,因为它一定诉出了一个群体的某些情绪. Karma police ...