题意:
给一颗n个点的树,有两种操作
CHANGE i ti : 把第i条边的权变为ti
QUERY a b : 问点a 到 点b 之间的边的最大权

思路:
树剖处理边权。
由于是边,所以只需要把边权处理到子节点上即可(查询的时候从节点2开始查询,或者把0处理成负无穷)

具体见代码:

 const int maxn =  + ;
const int maxnode = maxn * ; //线段树部分
int set_value, qL, qR;
int maxv[maxnode]; void update(int o, int L, int R)
{
if (qL <= L && R <= qR)
{
maxv[o] = set_value;
return;
}
int M = L + (R - L) / ;
if (qL <= M) update(lson);
if (qR > M) update(rson);
maxv[o] = max(maxv[o*], maxv[o*+]);
} int query(int o, int L, int R) {
if (qL <= L && R <= qR)
{
return maxv[o];
}
int M = L + (R - L) / ;
int ret = -INF;
if (qL <= M) ret = max(ret, query(lson));
if (qR > M) ret = max(ret, query(rson));
return ret;
} //树链剖分部分:
//
//u为连接的点,w为边权
struct Edge { int u, v, w; };
vector<int> G[maxn];
vector<Edge> e;
//往往是双向边
void add_edge(int u, int v, int w)
{
e.push_back((Edge){u, v, w});
G[u].push_back(v);
G[v].push_back(u);
} struct Node
{
int size, dep, son, top, fa, ti;
//依次表示第i个节点的:
//子节点数量,深度,所在链的顶端,重儿子,dfs序
} t[maxn]; int dfs_clock;//DFS时间序列 void dfs1(int u, int pa, int depth)//第一次DFS,得到size,dep,fa以及son的数据
{
t[u].son = ; //重儿子,为0表示没有重儿子
t[u].size = ; //节点数量
t[u].dep = depth;
t[u].fa = pa;
for (int i = ; i != G[u].size(); ++ i)
{
int v = G[u][i];
if (v == pa) continue;
dfs1(v, u, depth + );
t[u].size += t[v].size;
if (t[v].size > t[t[u].son].size) t[u].son = v;
}
} void dfs2(int u, int pa) // 得到时间戳等数据,u为当前节点,pa为父链顶端节点
{
t[u].ti = ++ dfs_clock; //u这个节点的时间戳是dfs_clock,dfs_clock下标是从1开始的,没有0!
t[u].top = pa; //top是u所在链的顶端
if (t[u].son != ) dfs2(t[u].son, t[u].top); //如果节点有重儿子,那么依旧是以pa为链顶端的一条链
for (int i = ; i != G[u].size(); ++ i)
{
int v = G[u][i];
if (v == t[u].son || v == t[u].fa) continue;//重儿子或者父节点,则跳过
dfs2(v, v);//新的一条链
}
} int n;
int lca(int x, int y)//更新x到y的之间所有的区间
{
int ret = -INF;
while (t[x].top != t[y].top)
{
if (t[t[x].top].dep < t[t[y].top].dep) swap(x,y); //x深 y浅
qL=t[t[x].top].ti;
qR=t[x].ti;
ret = max(ret, query(, , n));
x = t[t[x].top].fa;
}
if (t[x].dep > t[y].dep) swap(x, y);//x是上面一些的节点
if (x != y)
{
qL = t[x].ti + ;
qR = t[y].ti;
ret = max(ret, query(, , n));
}
return ret;
} void init()
{
memset(maxv, , sizeof(maxv));
dfs_clock = ;
scanf("%d", &n);
for (int i = ; i <= n; i++) G[i].clear();
e.clear();
int u, v, w;
for (int i = ; i < n; i++)
{
scanf("%d%d%d", &u, &v, &w);
add_edge(u, v, w);
}
} void solve()
{
dfs1(, , );
dfs2(, ); for (int i = ; i < n; i++)
{
set_value = e[i-].w;
if (t[e[i-].u].dep < t[e[i-].v].dep)
qL = qR = t[e[i-].v].ti;
else
qL = qR = t[e[i-].u].ti;
update(, , n);
}
char op[];
int u, v;
while (true)
{
scanf("%s", op);
if (op[] == 'D') break;
scanf("%d%d", &u, &v);
if (op[] == 'Q')
{
printf("%d\n", lca(u, v));
}
else
{
set_value = v;
if (t[e[u-].u].dep < t[e[u-].v].dep)
qL = qR = t[e[u-].v].ti;
else
qL = qR = t[e[u-].u].ti;
update(, , n);
}
}
printf("\n");
} int main()
{
int T;
scanf("%d", &T);
while (T--)
{
init();
solve();
}
return ;
}

SPOJ QTREE Query on a tree的更多相关文章

  1. SPOJ QTREE Query on a tree 树链剖分+线段树

    题目链接:http://www.spoj.com/problems/QTREE/en/ QTREE - Query on a tree #tree You are given a tree (an a ...

  2. spoj QTREE - Query on a tree(树链剖分+线段树单点更新,区间查询)

    传送门:Problem QTREE https://www.cnblogs.com/violet-acmer/p/9711441.html 题解: 树链剖分的模板题,看代码比看文字解析理解来的快~~~ ...

  3. SPOJ QTREE Query on a tree --树链剖分

    题意:给一棵树,每次更新某条边或者查询u->v路径上的边权最大值. 解法:做过上一题,这题就没太大问题了,以终点的标号作为边的标号,因为dfs只能给点分配位置,而一棵树每条树边的终点只有一个. ...

  4. SPOJ QTREE Query on a tree VI

    You are given a tree (an acyclic undirected connected graph) with n nodes. The tree nodes are number ...

  5. SPOJ QTREE Query on a tree V

    You are given a tree (an acyclic undirected connected graph) with N nodes. The tree nodes are number ...

  6. SPOJ QTREE Query on a tree ——树链剖分 线段树

    [题目分析] 垃圾vjudge又挂了. 树链剖分裸题. 垃圾spoj,交了好几次,基本没改动却过了. [代码](自带常数,是别人的2倍左右) #include <cstdio> #incl ...

  7. SPOJ QTREE - Query on a tree 【树链剖分模板】

    题目链接 引用到的大佬博客 代码来自:http://blog.csdn.net/jinglinxiao/article/details/72940746 具体算法讲解来自:http://blog.si ...

  8. SPOJ QTREE Query on a tree V ——动态点分治

    [题目分析] QTREE4的弱化版本 建立出分治树,每个节点的堆表示到改点的最近白点距离. 然后分治树上一直向上,取min即可. 正确性显然,不用担心出现在同一子树的情况(不会是最优解),请自行脑补. ...

  9. SPOJ - QTREE Query on a tree题解

    题目大意: 一棵树,有边权,有两个操作:1.修改一条边的权值:2.询问两点间路径上的边的权值的最大值. 思路: 十分裸的树链剖分+线段树,无非是边权要放到深度大的一端的点上,但是有两个坑爹的地方,改了 ...

随机推荐

  1. phonegap 3.3教程 地理信息api教程

    一 准备工作 phonegap3.3的地理信息教程.从零开始,首先要新建一个项目从命令行启动 可以看到这是默认的生成的www目录,在这个目录里是最原始的html文件,编译的时候在根据这里的文件生成an ...

  2. 基于线程池和连接池的Http请求

    背景:最新项目需求调用http接口,所以打算使用最新的httpClient客户端写一个工具类,写好了以后在实际应用过程中遇到了一些问题,因为数据量还算 大,每次处理大概要处理600-700次请求,平均 ...

  3. Spring中@Async注解实现“方法”的异步调用

    原文:http://www.cnblogs.com/zhengbin/p/6104502.html 简单介绍: Spring为任务调度与异步方法执行提供了注解支持.通过在方法上设置@Async注解,可 ...

  4. Spring + Mybatis 使用 PageHelper 插件分页

    原文:http://www.cnblogs.com/yucongblog/p/5330886.html 先增加maven依赖: <dependency> <groupId>co ...

  5. JQuery_高级选择器

    在很多特殊的元素上,比如父子关系的元素,兄弟关系的元素,特殊属性的元素等等. 在早期 CSS 的使用上,由于 IE6 等低版本浏览器不支持,所以这些高级选择器的使用也不具备普遍性,但随着 jQuery ...

  6. java 获取项目绝对路径

    String classPath = Thread.currentThread().getContextClassLoader().getResource("").getPath( ...

  7. 使用XML文件和Java代码控制UI界面

    Android推荐使用XML文件设置UI界面,然后用Java代码控制逻辑部分,这体现了MVC思想. MVC全名是Model View Controller,是模型(model)-视图(view)-控制 ...

  8. Linux运行级详解

    对于那些在DOS/Win9x/NT平台下的高级用户而言,Linux似乎是一个怪物.没有config.sys,没有 autoexec.bat,具有个人特色的机器配置不知道从何开始. 需要说明的是,很多人 ...

  9. UNIX-LINUX编程实践教程->第八章->实例代码注解->写一个简单的shell

    一 分析 要实现一个shell,需包含3个步骤 1)读入指令 2)指令解析 3)执行指令 1 从键盘读入指令 从键盘读入指令的几个要点: 1)调用getc函数等待并获取用户键盘输入. 2)每一行命令的 ...

  10. 向量时钟算法简介——本质类似MVCC

    转自:http://blog.chinaunix.net/uid-27105712-id-5612512.html 一.使用背景 先说一下需要用到向量时钟的场景.我们在写数据时候,经常希望数据不要存储 ...