题目链接:hdu_5807_Keep In Touch

题意:

在Byteland一共有nn个城市,编号依次为11到nn,同时有mm条单向道路连接着这些城市,其中第ii条道路的起点为u_iu​i​​,终点为v_i(1\leq u_i < v_i\leq n)v​i​​(1≤u​i​​<v​i​​≤n)。

特工团队一共有33名成员:007,008,以及009,他们将要执行qq次秘密任务。

在每次任务中,三人可能会处于三个不同的城市,他们互相之间通过对讲机保持联络。编号为ii的城市的无线电频为w_iw​i​​,如果两个城市的无线电频差值的绝对值不超过KK,那么无线电就可以接通。三个特工每个时刻必须要选择一条道路,走到下一个城市,每条道路都只需要花费11单位时间。

他们可以选择在任意城市终止任务,甚至可以在起点就终止任务,但不允许在道路上终止任务。现在他们想知道,对于每次任务,给定三个人的起始位置,有多少种可能的合法行动方案,使得行动过程中任意在城市的时刻,他们都可以两两联络?

两个方案被视作不同当且仅当至少存在一个人在某一时刻所在的城市不同。

注意:33个特工必须同时结束任务。
题解:

1004 Keep In Touch

考虑dp,设f[i][j][k]表示三个人分别在i,j,k时的方案数,直接转移是O(n^6)的。

于是考虑加维,设f[i][j][k][now]表示三个人分别在i,j,k,时,目前准备走now这个人的方案数,那么转移复杂度就降低到了O(n^4)。

这题的套路就是分段DP,朴素的同时转移会枚举三个点,所以会达到O(n6),

 #include<bits/stdc++.h>
#define F(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
typedef long long ll;
const int N=+,mod=; int t,n,m,K,q,x,y,z,w[N],g[N][N],dp[N][N][N][]; int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d%d",&n,&m,&K,&q);
F(i,,n)scanf("%d",w+i);
memset(g,,sizeof(g)),memset(dp,,sizeof(dp));
F(i,,m)scanf("%d%d",&x,&y),g[x][y]=;
for(int i=n;i>=;i--)
for(int j=n;j>=;j--)
for(int k=n;k>=;k--)
{
if(abs(w[i]-w[j])<=K&&abs(w[i]-w[k])<=K&&abs(w[k]-w[j])<=K)
(dp[i][j][k][]+=)%=mod;
else dp[i][j][k][]=;
if(dp[i][j][k][])F(ii,,i-)if(g[ii][i])
(dp[ii][j][k][]+=dp[i][j][k][])%=mod;
if(dp[i][j][k][])F(ii,,j-)if(g[ii][j])
(dp[i][ii][k][]+=dp[i][j][k][])%=mod;
if(dp[i][j][k][])F(ii,,k-)if(g[ii][k])
(dp[i][j][ii][]+=dp[i][j][k][])%=mod;
}
while(q--)scanf("%d%d%d",&x,&y,&z),printf("%d\n",dp[x][y][z][]);
}
return ;
}

hdu_5807_Keep In Touch(分段dp)的更多相关文章

  1. HDU5807分段dp

    DAG图. [题意] n(50)个城市m(c(n,2))条单向边(x,y),保证x<y 对于三个点(x,y,z)如果abs(w[x]-w[y])<=K && abs(w[x ...

  2. hdu3480 Division(dp平行四边形优化)

    题意:将n个数分成m段,每段的代价为最大值减最小值的平方,为代价最小是多少n<=10000 ,m<=5000 题解:先拍好序,从小到大,这样绝对是花费最小的,不过怎么样来做呢?一定很容易想 ...

  3. BZOJ3193 [JLOI2013]地形生成 【dp】

    题目链接 BZOJ3193 题解 注意\(key\)是小于 第一问,显然按高度降序排序,逐个插入 如果高度各不相同,那么之前插入的都比当前插入的\(i\)大,可插入的位置个数就确定了 由于存在高度相同 ...

  4. BZOJ1090: [SCOI2003]字符串折叠

    区间dp. 一种是分段dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]); 一种是这一段可以缩写dp[i][j]=min(dp[i][j],dp[i][l]+2+ca ...

  5. 2326: [HNOI2011]数学作业 - BZOJ

    首先是DP,分段DP(按位数讨论) 然后每一段构造出它对应的矩阵,用矩阵快速幂加速 type matrix=..,..]of int64; var n,m:int64; a,b,c,d:matrix; ...

  6. Educational Codeforces Round 62 (Rated for Div. 2)

    A. Detective Book 题意:一个人读书  给出每一章埋的坑在第几页可以填完 . 一个人一天如果不填完坑他就会一直看 问几天能把这本书看完 思路:模拟一下 取一下过程中最大的坑的页数  如 ...

  7. BZOJ题目(持续更新)

    bzoj1009:kmp想法+递推+矩阵快速幂.很好的想法,考虑用长串去kmp匹配短串,dp[i][j]表示匹配指针分别指在i.j位置时候,前i位母字符串一共有多少种可能性,那么dp[i][j]=Σd ...

  8. 2017多校Round3(hdu6056~hdu6066)

    补题进度:7/11 1001 待填坑 1002 待填坑 1003(set) 题意: 给定长度为n(n<=5e5)的数组(是n的一个排列)和一个整数k(k<=80),f[l,r]定义为区间[ ...

  9. poj 3744 题解

    题目 题意: $ yyf $ 一开始在 $ 1 $ 号节点他要通过一条有 $ n $ 个地雷的道路,每次前进他有 $ p $ 的概率前进一步,有 $ 1-p $ 的概率前进两步,问他不领盒饭的概率. ...

随机推荐

  1. Oracle使用虚拟表dual一次插入多条记录

    从一个CSV文件中读取所有的数据,并且插入到一个Oracle数据库中,并且几分钟内完成,大约有60万条.网上有人说了,你可以循环insert然后插入几千条以后Commit一次,我靠,你自己试试看!!如 ...

  2. Multi-Objective Data Placement for Multi-Cloud Socially Aware Services---INFOCOM 2014

    [标题] [作者] [来源] [对本文评价] [why] 存在的问题 [how] [不足] assumption in future work [相关方法或论文] [重点提示] [其它]

  3. PLSQL 几种游标的用法

    分类: Oracle 1. PL/SQL里的游标可以分为显式和隐式两种,而隐式有分为select into隐式游标和for .. in 隐式游标两种.所以,我们可以认为,有3种游标用法: A. 显式游 ...

  4. ModelDriven

    功能:  submit 之后显示结果  1.项目结构 2.web.xml <?xml version="1.0" encoding="UTF-8"?> ...

  5. Scala学习---映射和元祖

    1.设置一个映射,其中包含你想要的一些装备,以及他们的价格.然后构建另一个映射,采用同一组键,但在价格上打9折. scala> val map = Map("a"->1 ...

  6. NewtonJson中转义的斜杠\和多余的引号处理

    使用newtonjson序列化的json串正常的,但通过网络传输后,会再包装一层引号和对原有定义引号的转义,最后结果就变成这种数据: “\"{\\\"State\":fa ...

  7. CodeForces 696C PLEASE

    快速幂,费马小定理,逆元. 设$dp[n]$表示$n$次操作之后的概率,那么$dp[n] = \frac{{(1 - dp[n - 1])}}{2}$.$1-dp[n - 1]$表示上一次没有在中间的 ...

  8. 实验吧Web-PHP大法

    笔记 字符串比对解析,与大小写无关. eregi()函数 语法: eregi(string pattern, string string, array [regs]); 返回值: 整数/数组 特点:P ...

  9. mybatis 查询语句(按条件查询)

    <select id="getAllDitch" parameterType="xxx.xx.entity.CheckDitch" resultType= ...

  10. 【转】动态字节码技术跟踪Java程序

    Whats is Java Agent?   .. java.lang.instrument.Instrumentation 之前有写 基于AOP的日志调试 讨论一种跟踪Java程序的方法, 但不是很 ...