CF 327E(Axis Walking-状态压缩Dp-lowbit的使用)
3 seconds
512 megabytes
standard input
standard output
Iahub wants to meet his girlfriend Iahubina. They both live in Ox axis (the horizontal axis). Iahub lives at point 0 and Iahubina at point d.
Iahub has n positive integers a1, a2, ..., an. The sum of those numbers is d. Suppose p1, p2, ..., pn is a permutation of {1, 2, ..., n}. Then, let b1 = ap1, b2 = ap2 and so on. The array b is called a "route". There are n! different routes, one for each permutation p.
Iahub's travel schedule is: he walks b1 steps on Ox axis, then he makes a break in point b1. Then, he walks b2 more steps on Ox axis and makes a break in point b1 + b2. Similarly, at j-th (1 ≤ j ≤ n) time he walks bj more steps on Ox axis and makes a break in point b1 + b2 + ... + bj.
Iahub is very superstitious and has k integers which give him bad luck. He calls a route "good" if he never makes a break in a point corresponding to one of those k numbers. For his own curiosity, answer how many good routes he can make, modulo 1000000007(109 + 7).
The first line contains an integer n (1 ≤ n ≤ 24). The following line contains n integers: a1, a2, ..., an (1 ≤ ai ≤ 109).
The third line contains integer k (0 ≤ k ≤ 2). The fourth line contains k positive integers, representing the numbers that give Iahub bad luck. Each of these numbers does not exceed 109.
Output a single integer — the answer of Iahub's dilemma modulo 1000000007 (109 + 7).
3
2 3 5
2
5 7
1
3
2 2 2
2
1 3
6
In the first case consider six possible orderings:
- [2, 3, 5]. Iahub will stop at position 2, 5 and 10. Among them, 5 is bad luck for him.
- [2, 5, 3]. Iahub will stop at position 2, 7 and 10. Among them, 7 is bad luck for him.
- [3, 2, 5]. He will stop at the unlucky 5.
- [3, 5, 2]. This is a valid ordering.
- [5, 2, 3]. He got unlucky twice (5 and 7).
- [5, 3, 2]. Iahub would reject, as it sends him to position 5.
In the second case, note that it is possible that two different ways have the identical set of stopping. In fact, all six possible ways have the same stops: [2, 4, 6], so there's no bad luck for Iahub.
状态压缩DP
考试时由于24*2^24 复杂度太高没写
结果答案居然就是这样
不过枚举时要直接用lowbit(i),返回min(2^k) (i)2 第k位为1
大家直接看答案就行了
忽然发现几乎没做过状压DP的题
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#include<cmath>
#include<cctype>
#include<cassert>
#include<climits>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define RepD(i,n) for(int i=n;i>=0;i--)
#define MEM(a) memset(a,0,sizeof(a))
#define MEMI(a) memset(a,127,sizeof(a))
#define MEMi(a) memset(a,128,sizeof(a))
#define INF (2139062143)
#define F (1000000007)
#define MAXN (1<<24)
#define MAXItem (24+10)
typedef long long ll;
int n,k;
ll f[MAXN]={0},g[MAXN]={0},A[MAXN]={0},a[MAXItem]={0},b[MAXItem]={0};
int main()
{
// freopen("CF327E.in","r",stdin);
scanf("%d",&n);
For(i,n) scanf("%d",&a[i]),A[1<<i-1]=a[i];
cin>>k;
For(i,k) scanf("%d",&b[i]);Fork(i,k+1,2) b[i]=-1; //除了x=-1,x^-1!=0
Rep(i,1<<n) f[i]=f[i-(i&(-i))]+A[i&(-i)];
g[0]=1;
Rep(i,1<<n)
if (f[i]^b[1]&&f[i]^b[2]&&f[i]^b[3])
{
//for(int j=(1<<n)-1;j;j-=j&(-j)) f[i+(j&-j)
for(int j=i;j;j-=j&(-j)) g[i]=g[i]+g[i-(j&(-j))];
g[i]%=F;
} printf("%I64d",g[(1<<n)-1]%F); // while(1);
return 0;
}
CF 327E(Axis Walking-状态压缩Dp-lowbit的使用)的更多相关文章
- CodeForces 327E Axis Walking(状压DP+卡常技巧)
Iahub wants to meet his girlfriend Iahubina. They both live in Ox axis (the horizontal axis). Iahub ...
- Codeforces 327E Axis Walking 状压dp
这题真的有2500分吗... 难以置信... #include<bits/stdc++.h> #define LL long long #define fi first #define s ...
- hoj2662 状态压缩dp
Pieces Assignment My Tags (Edit) Source : zhouguyue Time limit : 1 sec Memory limit : 64 M S ...
- POJ 3254 Corn Fields(状态压缩DP)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4739 Accepted: 2506 Descr ...
- [知识点]状态压缩DP
// 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...
- HDU-4529 郑厂长系列故事——N骑士问题 状态压缩DP
题意:给定一个合法的八皇后棋盘,现在给定1-10个骑士,问这些骑士不能够相互攻击的拜访方式有多少种. 分析:一开始想着搜索写,发现该题和八皇后不同,八皇后每一行只能够摆放一个棋子,因此搜索收敛的很快, ...
- DP大作战—状态压缩dp
题目描述 阿姆斯特朗回旋加速式阿姆斯特朗炮是一种非常厉害的武器,这种武器可以毁灭自身同行同列两个单位范围内的所有其他单位(其实就是十字型),听起来比红警里面的法国巨炮可是厉害多了.现在,零崎要在地图上 ...
- 状态压缩dp问题
问题:Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Ev ...
- BZOJ-1226 学校食堂Dining 状态压缩DP
1226: [SDOI2009]学校食堂Dining Time Limit: 10 Sec Memory Limit: 259 MB Submit: 588 Solved: 360 [Submit][ ...
随机推荐
- c#兼容 PHP中的md5
原文:c#兼容 PHP中的md5 由于工作需要,需要使用C#去对一个php程序做二次开发.在登录验证的时候,发现一个小问题. 就是用C#写的md5算法得出的结果和php的md5()得出的结果有时候会不 ...
- [Android 性能优化系列]降低你的界面布局层次结构的一部分
大家假设喜欢我的博客,请关注一下我的微博,请点击这里(http://weibo.com/kifile),谢谢 转载请标明出处(http://blog.csdn.net/kifile),再次感谢 原文地 ...
- 告别alert,拥抱console
记得学习javascript的第一个demo就是alert("Hello World");可是学习接触javascript这么长时间了还是在alert,因为javascript调 ...
- 怎样以学习单片机为契机,逐步成为优秀的project师
现状 不知道阅读本文的读者,在初学单片机时是否和我以前一样迷茫.看到各种新的术语,疑惑不解:不知道从何学起:照着书中的样例一步一步做都没有问题,可是自己试着做东西,遇到各种问题却不会解决,向别人提问, ...
- Memcache存储大量数据的问题
Memcache存储大数据的问题 huangguisu Memcached存储单个item最大数据是在1MB内,假设数据超过1M,存取set和get是都是返回false,并且引起性能的问题. 我们之 ...
- 开始Unity3D参观考察
前言:这个系列的文章纯属对自己学习的整理,非高手之作. 但确实的记载了我作为一个没接触过3D游戏编程的大学生的心路历程.争取每周整理一次吧. 之所以会開始学Unity3D,最基本的原因是由于在快放暑假 ...
- mysql通过字段注释查找字段名称
原文:mysql通过字段注释查找字段名称 有时候表的字段太多,只是大致记得表的注释,想通过字段注释查找字段名称,可以用如下语句: SELECT COLUMN_NAME,column_comment F ...
- MVC区域小结
MVC区域小结 MVC区域小结 MVC3一直在学习,项目中有的时候也会用到,博客园也一直逛,想写点什么东西,可惜我这个人平时都很懒,理论层面的东西自己写不来,还是来点实际的简单入门的博客,对自己总结能 ...
- Javascript技巧实例精选(1)—鼠标选择动态改变网页背景颜色
>>点击这里下载html源文件代码<< 采用Javascript实现,用鼠标点击相应颜色,动态改变网页背景颜色 这是截图 相应的Javascript源代码为: var hex ...
- iOS基础 - 定时器
1.可以完成的功能:每隔一段时间做一些固定的事情 2.创建定时器 1> 方法1 NSTimer *timer = [NSTimer timerWithTimeInterval:1.5 targe ...