Recovery

Types of Failures

Wrong data entry

  • Prevent by having constraints in the database
  • Fix with data cleaning

Disk crashes

  • Prevent by using redundancy (RAID, archive)
  • Fix by using archives

Fire, theft, bankruptcy…

  • Buy insurance, change profession…

System failures: most frequent (e.g. power)

  • Use recovery

System Failures

Each transaction has internal state

When system crashes, internal state is lost

  • Don’t know which parts executed and which didn’t

Remedy: use a log

  • A file that records every single action of the transaction

Transactions

Assumption: the database is composed of elements

Usually 1 element = 1 block

Can be smaller (=1 record) or larger (=1 relation)

Assumption: each transaction reads/writes some elements

Correctness Principle

There exists a notion of correctness for the database

  • Explicit constraints (e.g. foreign keys)
  • Implicit conditions (e.g. sum of sales = sum of invoices)

Correctness principle: if a transaction starts in a correct database state, it ends in a correct database state

Consequence: we only need to guarantee that transactions are atomic, and the database will be correct forever

Primitive Operations of Transactions

INPUT(X)

  • read element X to memory buffer

READ(X,t)

  • copy element X to transaction local variable t

WRITE(X,t)

  • copy transaction local variable t to element X

OUTPUT(X)

  • write element X to disk

The Log

An append-only file containing log records

Note: multiple transactions run concurrently, log records are interleaved

After a system crash, use log to:

  • Redo some transaction that didn’t commit
  • Undo other transactions that didn’t commit

Undo Logging

Log records

transaction T has begun

T has committed

T has aborted

<T,X,v> T has updated element X, and its old value was v

Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be written to disk before X is written to disk

U2: If T commits, then must be written to disk only after all changes by T are written to disk

Hence: OUTPUTs are done early

Recovery with Undo Log

After system’s crash, run recovery manager

Idea 1. Decide for each transaction T whether it is completed or not

Idea 2. Undo all modifications by incompleted transactions

Recovery manager:

Read log from the end; cases:

  • : mark T as completed
  • : mark T as completed
  • <T,X,v>: if T is not completed
    then write X=v to disk
    else ignore
  • : ignore

阅读方向,从下向上

Note: all undo commands are idempotent, If we perform them a second time, no harm is done

stop reading the log:

  • We cannot stop until we reach the beginning of the log file
  • This is impractical
  • Better idea: use checkpointing

Checkpointing

Checkpoint the database periodically

  • Stop accepting new transactions
  • Wait until all curent transactions complete
  • Flush log to disk
  • Write a log record, flush
  • Resume transactions

Redo Logging

Log records

<T,X,v>= T has updated element X, and its new value is v

R1: If T modifies X, then both <T,X,v> and must be written to disk before X is written to disk

Hence: OUTPUTs are done late

After system’s crash, run recovery manager

Step 1. Decide for each transaction T whether it is completed or not

Step 2. Read log from the beginning, redo all updates of committed transactions

Undo/Redo Logging

Log records, only one change

<T,X,u,v>= T has updated element X, its old value was u, and its new value is v

Recovery with Undo/Redo Log

After system’s crash, run recovery manager

Redo all committed transaction, top-down

Undo all uncommitted transactions, bottom-up

总结

日志undo先写日志(从下向上读)redo先写磁盘(从上到下读)

冲突可串行 & 两阶锁

两个事物使用同一个资源并有一个是写就是冲突的,简单讲就是在冲突可串行并发操作的前驱图中是没有环路的,前驱图无环就是冲突可串行的。

每个事物在使用资源的时候都是先统一取再统一放的,也就是其图示先增后减,斜率不会出现其他变动。

E.g.

Consider the following schedule:
T1 STARTS
T1 reads item B
T1 writes item B with old value 11, new value 12
T2 STARTS
T2 reads item B
T2 writes item B with old value 12, new value 13
T3 STARTS
T3 reads item A
T3 writes item A with old value 29, new value 30
T2 reads item A
T2 writes item A with old value 30, new value 31
T2 COMMITS
T1 reads item D
T1 writes item D with old value 44, new value 45
T3 COMMITS
T1 COMMITS

(a) What serial schedule is this equivalent to? If none, then explain why.

The serializability graph for the above schedule is: T1T2  T3. Any order that complies with the
topological order of the graph like T1  T3  T2 is an equivalent serial schedule for our schedule

(b) Is this schedule consistent with two phase locking? Explain why.

If we assume that all
transactions get the locks exactly before the operation and release them
afterwards, it is not consistent with two phase locking. This is
because T1 releases its lock on B after its second operation while
acquiring a lock on D at its last two operations. By removing the last
two operations of T1 the schedule becomes 2PL.

If we assume that the
transactions get all the locks they need at the beginning of the
transaction, and release them after the finish the operation, this
schedule will be 2PL. The minimum operations that could be added to the
schedule will be “T1 reads item A”. In this case, T1 has to acquire the
lock on A again after releasing its lock on A after its first
write.(这段话太深奥了,我用百度翻译都没看懂。。。)

Data Management Technology(5) -- Recovery的更多相关文章

  1. Data Management Technology(1) -- Introduction

    1.Database concepts (1)Data & Information Information Is any kind of event that affects the stat ...

  2. Data Management Technology(3) -- SQL

    SQL is a very-high-level language, in which the programmer is able to avoid specifying a lot of data ...

  3. Data Management Technology(2) -- Data Model

    1.Data Model Model Is the abstraction of real world Reveal the essence of objects, help people to lo ...

  4. Data Management Technology(4) -- 关系数据库理论

    规范化问题的提出 在规范化理论出现以前,层次和网状数据库的设计只是遵循其模型本身固有的原则,而无具体的理论依据可言,因而带有盲目性,可能在以后的运行和使用中发生许多预想不到的问题. 在关系数据库系统中 ...

  5. [Windows Azure] Data Management and Business Analytics

    http://www.windowsazure.com/en-us/develop/net/fundamentals/cloud-storage/ Managing and analyzing dat ...

  6. Intel Active Management Technology

    http://en.wikipedia.org/wiki/Intel_Active_Management_Technology Intel Active Management Technology F ...

  7. MySQL vs. MongoDB: Choosing a Data Management Solution

    原文地址:http://www.javacodegeeks.com/2015/07/mysql-vs-mongodb.html 1. Introduction It would be fair to ...

  8. 场景3 Data Management

    场景3 Data Management 数据管理 性能优化 OLTP OLAP 物化视图 :表的快照 传输表空间 :异构平台的数据迁移 星型转换 :事实表 OLTP : 在线事务处理 1. trans ...

  9. Data Management and Data Management Tools

    Data Management ObjectivesBy the end o this module, you should understand the fundamentals of data m ...

随机推荐

  1. ORACLE spool打印

    问题描述:spool让我想起来了spooling假脱机,但是这个spool是oracle下的命令,将select查询出来的数据打印出来 1.linuxi下 spool +路径+文件名,这里的文件如果不 ...

  2. asp.net core 3.0获取web应用的根目录

    目录 1.需求 2.解决方案 1.需求 asp.net core 3.0的web项目中,在controller中,想要获取wwwroot下的imgs/banners文件夹下的所有文件: 在传统的asp ...

  3. weblogic的linux静默搭建

    前言: Weblogic与Tomcat都是java应用的容器,而这两者有什么大的不同呢?Tomcat是Apache基金会提供的Servlet容器,它支持JSP, Servlet和JDBC等J2EE关键 ...

  4. Selenium 与自动化测试 —— 《Selenium 2 自动化测试实战》读书笔记

    背景 最近在弄 appium,然后顺便发现了 Selenium 框架和这本书,恰好这本书也介绍了一些软件测试&自动化测试的理论知识,遂拿过来学习学习.所以本文几乎没有实践内容,大多都是概念和工 ...

  5. Python项目搬迁,快捷导出环境依赖包到requirements.txt

    项目搬迁的时候,需要把当前的环境依赖包导出,然后到部署项目的服务器上安装依赖. 我们可以通过下面的命令执行,把依赖包导出到requirements.txt文件里. 生成requirements.txt ...

  6. 一文理解Java IO/NIO/AIO

      目录 概述 一.IO流(同步.阻塞) 二.NIO(同步.非阻塞) 三.NIO2(异步.非阻塞) 正文 概述 在我们学习Java的IO流之前,我们都要了解几个关键词 同步与异步(synchronou ...

  7. web.xml的常见配置

    web.xml的常见配置 <!-- 配置全局的编码过滤器 --> <filter> <description>编码过滤器</description> & ...

  8. TimeSpan的用法

    TimeSpan的属性和方法: 下面的列表涵盖了其中的一部分: 属性: Add:与另一个TimeSpan值相加. Days: 返回用天数计算的TimeSpan值.Hours: 返回用小时计算的Time ...

  9. 嵌入Canvas App到Dynamics 365 Customer Engagement(Model-Driven App)中,创造更多可能!

    我是微软Dynamics 365 & Power Platform方面的工程师罗勇,也是2015年7月到2018年6月连续三年Dynamics CRM/Business Solutions方面 ...

  10. 人体分析Demo-百度API

    本示例是采用Delphi 7 调用百度人体分析API:首先说明一下,怎么创建测试应用. 1.  登录百度云官网 https://cloud.baidu.com/ 当然需要一个百度账号 2.  进入管理 ...