大家都知道,在客户端与服务器数据传输的过程中,http协议的传输是不安全的,也就是一般情况下http是明文传输的。但https协议的数据传输是安全的,也就是说https数据的传输是经过加密。

在客户端与服务器这两个完全没有见过面的陌生人交流中,https是如何保证数据传输的安全性的呢?

下面我将带大家一步步了解https是如何加密才得以保证数据传输的安全性的。我们先把客户端称为小客,服务器称为小服。然后一步步探索在小客与小服的交流中(就是一方请求一方响应),https是如何保证他们的交流不会被中间人窃听的。

1. 对称加密

假如现在小客与小服要进行一次私密的对话,他们不希望这次对话内容被其他外人知道。可是,我们平时的数据传输过程中又是明文传输的,万一被某个黑客把他们的对话内容给窃取了,那就难受了。

为了解决这个问题,小服这家伙想到了一个方法来加密数据,让黑客看不到具体的内容。该方法是这样子的:

在每次数据传输之前,小服会先传输小客一把密钥,然后小服在之后给小客发消息的过程中,会用这把密钥对这些消息进行加密。小客在收到这些消息后,会用之前小服给的那把密钥对这些消息进行解密,这样,小客就能得到密文里面真正的数据了。如果小客要给小服发消息,也同样用这把密钥来对消息进行加密,小服收到后也用这把密钥进行解密。 这样,就保证了数据传输的安全性。如图所示:

这时,小服想着自己的策咯,还是挺得意的。

可是,这时候问题来了。这个策略安全的前提是,小客拥有小服的那把密钥。可问题是,小服是以明文的方式把这把密钥传输给小客的,这个时候,如果黑客截取了这把密钥,那就难受了。小服与小客就算是加密了内容,在截取了密钥的黑客老哥眼里,这和明文没啥区别。

2. 非对称加密

小服还是挺聪明的,得意了一会之后,小服意识到了密钥会被截取这个问题。倔强的小服又想到了另外一种方法:用非对称加密的方法来加密数据。该方法是这样的:

小服和小客都拥有两把钥匙,一把钥匙的公开的(全世界都知道也没关系),称之为公钥;而另一把钥匙是保密(也就是只有自己才知道),称之为私钥。并且,用公钥加密的数据,只有对应的私钥才能解密;用私钥加密的数据,只有对应的公钥才能解密。

所以在传输数据的过程中,小服在给小客传输数据的过程中,会用小客给他的公钥进行加密,然后小客收到后,再用自己的私钥进行解密。小客给小服发消息的时候,也一样会用小服给他的公钥进行加密,然后小服再用自己的私钥进行解密。 这样,数据就能安全着到达双方。如图:

想着这么复杂的策略都能想出来,小服可是得意的不能在得意了…..

看着那么得意的小服,小客这时心情就不得好了。还没等小服得意多久,小客就给它泼了一波冷水了。

小客严肃着说:其实,你的这种方法也不是那么的安全啊。还是存在被黑客截取的危险啊。例如:

你在给我传输公钥的过程中,如果黑客截取了你的公钥,并且拿着自己的公钥来冒充你的公钥来发给我。我收到公钥之后,会用公钥进行加密传输(这时用的公钥实际上是黑客的公钥)。黑客截取了加密的消息之后,可以用他自己的私钥来进行解密来获取消息内容。然后在用你(小服)的公钥来对消息进行加密,之后再发给你(小服)。 这样子,我们的对话内容还是被黑客给截取了啊。(倒过来小客给小服传输公钥的时候也一样)。

我靠,这么精妙的想法居然也不行,小服这波,满脸无神。

插讲下

其实在传输数据的过程中,在速度上用对称加密的方法会比非对称加密的方法快很多。所以在传输数据的时候,一般不单单只用非对称加密这种方法(我们先假设非对称密码这种方法很安全),而是会用非对称加密 + 对称加密这两种结合的方法。 你想啊,对于对称加密这种方法来说,之所以不安全是因为密钥在传输的过程中,被别人知道了。基于这个,我们可以用非对称加密方法来安全着传输密钥,之后在用对称加密的方法来传输消息内容(当然,我这里假定了非对称加密传输是安全的,下面会讲如何使之安全)。

数字证书

我们回头想一下,是什么原因导致非对称加密这种方法的不安全性呢?它和对称加密方法的不安全性不同。非对称加密之所以不安全,是因为小客收到了公钥之后,无法确定这把公钥是否真的是小服。

也就是说,我们需要找到一种策略来证明这把公钥就是小服的,而不是别人冒充的。

为了解决这个问题,小服和小客通过绞尽脑汁想出了一种终极策略:数字证书

我们需要找到一个拥有公信力、大家都认可的认证中心(CA)

小服再给小客发公钥的过程中,会把公钥以及小服的个人信息通过Hash算法生成消息摘要。如图:

为了防止摘要被人调换,小服还会用CA提供的私钥对消息摘要进行加密来形成数字签名。如图:

并且,最后还会把原来没Hash算法之前的信息和数字签名合并在一起,形成数字证书。如图:

当小客拿到这份数字证书之后,就会用CA提供的公钥来对数字证书里面的数字签名进行解密得到消息摘要,然后对数字证书里面小服的公钥和个人信息进行Hash得到另一份消息摘要,然后把两份消息摘要进行对比,如果一样,则证明这些东西确实是小服的,否则就不是。如图:

这时可能有人会有疑问,CA的公钥是怎么拿给小客的呢?小服又怎么有CA的私钥呢?其实,(有些)服务器在一开始就向认证中心申请了这些证书,而客户端里,也会内置这些证书。如图(此图来元阮一峰的网络日志)

当客户端收到服务器返回来的数据时,就会在内置的证书列表里,查看是否有有解开该数字证书的公钥,如果有则…..否则…..

讲到这里,就大概结束了。希望对你有所帮助勒。如果有哪里写得不对的地方,欢迎大家指出。

浅谈Http与Https的更多相关文章

  1. 浅谈HTTP和HTTPS的区别

    这篇随笔我们从六个步骤来学习: 1.了解HTTP和HTTPS的基本概念 2.HTTPS诞生的目的 3.HTTP与HTTPS的区别 4.HTTP和HTTPS的工作原理 5.HTTPS的优缺点 6.如何将 ...

  2. 浅谈HTTP和HTTPS

    HTTP和HTTPS协议 网络协议:计算机之间为了实现网络通信而达成的一种“约定”或“规则”,有了这种“约定”,不同厂商的生产设备,以及不同不同操作系统组成的计算机之间,就可以实现通信. HTTP(H ...

  3. 浅谈动态规划(Dynamic Programming)

    利用Leetcode#198打劫家舍 浅谈动态规划 Origin:https://leetcode-cn.com/problems/house-robber/ 题目本身不难,就是一个动态规划的问题.在 ...

  4. 浅谈HTTPS以及Fiddler抓取HTTPS协议

    最近想尝试基于Fiddler的录制功能做一些接口的获取和处理工作,碰到的一个问题就是简单连接Fiddler只能抓取HTTP协议,关键的登录请求等HTTPS协议都没有捕捉到,所以想让Fiddler能够同 ...

  5. [转]浅谈https\ssl\数字证书

    浅谈https\ssl\数字证书 http://www.cnblogs.com/P_Chou/archive/2010/12/27/https-ssl-certification.html 全球可信的 ...

  6. 浅谈HTTPS以及Fiddler抓取HTTPS协议(摘抄)

    一.浅谈HTTPS 我们都知道HTTP并非是安全传输,在HTTPS基础上使用SSL协议进行加密构成的HTTPS协议是相对安全的.目前越来越多的企业选择使用HTTPS协议与用户进行通信,如百度.谷歌等. ...

  7. 【转载】浅谈HTTPS以及Fiddler抓取HTTPS协议

    最近想尝试基于Fiddler的录制功能做一些接口的获取和处理工作,碰到的一个问题就是简单连接Fiddler只能抓取HTTP协议,关键的登录请求等HTTPS协议都没有捕捉到,所以想让Fiddler能够同 ...

  8. 浅谈 HTTPS 和 SSL/TLS 协议的背景与基础

    来自:编程随想   >> 相关背景知识 要说清楚 HTTPS 协议的实现原理,至少需要如下几个背景知识. 大致了解几个基本术语(HTTPS.SSL.TLS)的含义 大致了解 HTTP 和 ...

  9. 浅谈angular2+ionic2

    浅谈angular2+ionic2   前言: 不要用angular的语法去写angular2,有人说二者就像Java和JavaScript的区别.   1. 项目所用:angular2+ionic2 ...

随机推荐

  1. VNC服务配置

    Windows通过VNC远程桌面访问Ubuntu设备:一个WIN7的机器,一个系统为Ubuntu的机器 (二者可以均可为虚拟机或实体机) 目的:在Windows系统上通过VNC远程访问Ubuntu. ...

  2. 远程调试出现DEP0600: 部署失败。无法通过新部署管道进行部署错误解决

    昨天我连接树莓派调试没问题,今天来的时候却总是出现DEP0600: 部署失败.无法通过新部署管道进行部署.错误 我怀疑是环境问题,然后发现蓝莓派上面没有远程调试监视器(MSVSMON.EXE)进程,怀 ...

  3. 字符串如何实现反转?python实现

    今天和一个同事出去吃饭,突然话风转变,考了问我一个问题,他说哥,你知道字符串怎么反转吗? 我想了想,我擦,回家看我博客.作为一个资深开发,怎么可能被一个毛头小子问住了! 于是,我今天就稍微的整理了一下 ...

  4. c++小游戏——三国杀

    #include<iostream> #include<time.h> #include<stdio.h> #include <stdlib.h> us ...

  5. ForkJoinPool分支/合并框架工程使用的工作窃取

    ForkJoinPool分支/合并框架 在必要的情况下,讲一个大任务,进行拆分(fork)成若干个小任务(拆到不可拆为止),再将一个个小的任务运算的结果进行join汇总. 工作窃取的背景 分支/合并框 ...

  6. KafKa 发消息到Storm

    通过kafka客户端发送数据,由KafkaSpout进行接收消息,传输到ConsumerBolt进行实时数据处理. maven依赖 <dependencies> <!-- https ...

  7. ASP.NET登录验证码解决方案

    目录 #验证码效果图 #代码 0.html代码 1.Handler中调用验证码生成类 2.验证码图片绘制生成类 3.高斯模糊算法类 #注意 #参考 在web项目中,为了防止登录被暴力破解,需要在登录的 ...

  8. 《VR入门系列教程》之3---运动追踪与输入设备

    运动追踪设备    第二种可以使人脑相信它真实处于虚拟世界的关键技术就是运动追踪技术,它可以通过追踪头部的运动状态实时更新渲染的场景.这与我们在真实世界中观看周围非常类似.    高速的惯性测量单元( ...

  9. Java中Random随机数

    java中一般有两种随机数,一个是Math中random()方法,一个是Random类. 一.Math.random() 随即生成0<=x<1的小数. 实例:如何写,生成随机生成出0~10 ...

  10. HTTP_2_HTTP协议概要

    http协议概要 HTTP 通信对象 通信方式 通信状态 定位资源 节省通信量 超文本传输协议 客户端与服务器端 请求和响应 不保存状态(借助cookie) 请求URI keep-alive/pipe ...