题目链接

problem

一个有向无重边自环图,设\(D\)为从\(1\)号点走到\(n\)号点的最短距离。问有多少条从\(1\)到\(n\)的路径长度不超过\(D+K\)。\(K\)为给定的值,且\(K\le 50\)

如果有无数条,输出-1

solution

下面有\(dis[i]\)表示\(i\)号点到\(n\)号点的最短路径长度。

设\(f[i][j]\)表示从\(i\)号点走到\(n\)号点,走了\(j\)的多余路径的方案数。就有如下转移:

\[f[i][j]=\sum\limits_{i,v之间有边}f[v][j-(dis[v]+w-dis[i])]
\]

记忆化搜索即可。

注意到如果出现了无数条路径,肯定出现了0环。也就是某一个状态被访问了两次。记忆化搜索的过程中标记一下即可。

code

#include<cstdio>
#include<iostream>
#include<ctime>
#include<queue>
#include<cstring>
#include<string>
using namespace std;
typedef long long ll;
const int N = 200010;
ll read() {
ll x = 0,f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
x = x * 10 + c - '0';
c = getchar();
}
return x * f;
}
struct node {
int v,nxt,w;
}e[N << 1],E[N << 1];
int head[N],ejs;
void add(int u,int v,int w) {
e[++ejs].v = v;e[ejs].nxt = head[u];head[u] = ejs;e[ejs].w = w;
}
int head2[N],ejs2;
void add2(int u,int v,int w) {
E[++ejs2].v = v;E[ejs2].w = w;E[ejs2].nxt = head2[u];head2[u] = ejs2;
}
queue<int>q;
int n,m,K,mod,dis[N],vis[N];
void spfa(int U) {
memset(dis,0x3f,sizeof(dis));
memset(vis,0,sizeof(vis));
dis[U] = 0;
q.push(U);
while(!q.empty()) {
int u = q.front();q.pop();vis[u] = 0;
for(int i = head2[u];i;i = E[i].nxt) {
int v = E[i].v;
if(dis[v] > dis[u] + E[i].w) {
dis[v] = dis[u] + E[i].w;
if(!vis[v]) {
vis[v] = 1;q.push(v);
}
}
}
}
}
int bz[N][60],f[N][60];
int dfs(int u,int x) {
if(bz[u][x] == 2) return f[u][x];
if(bz[u][x] == 1) return -1;
bz[u][x] = 1;
for(int i = head[u];i;i = e[i].nxt) {
int v = e[i].v;
int w = x - (dis[v] + e[i].w - dis[u]);
if(w < 0 || w > K) continue;
int k = dfs(v,w);
if(k == -1) return -1;
f[u][x] += k;
f[u][x] %= mod;
}
bz[u][x] = 2;
return f[u][x];
}
int main() {
int T = read();
while(T--) {
memset(head,0,sizeof(head));
ejs2 = 0;
memset(head2,0,sizeof(head2));
ejs = 0;
n = read(),m = read(),K = read(),mod = read(); memset(f,0,sizeof(f));
memset(bz,0,sizeof(bz)); for(int i = 1;i <= m;++i) {
int u = read(),v = read(),w = read();
add(u,v,w);
add2(v,u,w);
} spfa(n); f[n][0] = 1;
int ans = 0;
for(int i = 0;i <= K;++i) {
int k = dfs(1,i);
if(k == -1) {
ans = -1;break;
}
ans += k;
ans %= mod;
}
printf("%d\n",ans);
} return 0;
}

Noip2017Day1T3 逛公园的更多相关文章

  1. [vijos P1083] 小白逛公园

    不知怎地竟有种错觉此题最近做过= =目测是类似的?那道题貌似是纯动归? 本来今晚想做两道题的,一道是本题,一道是P1653疯狂的方格取数或NOI08 Employee,看看现在的时间目测这个目标又达不 ...

  2. Bzoj 1756: Vijos1083 小白逛公园 线段树

    1756: Vijos1083 小白逛公园 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1021  Solved: 326[Submit][Statu ...

  3. BZOJ 1756: Vijos1083 小白逛公园

    题目 1756: Vijos1083 小白逛公园 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 856  Solved: 264[Submit][Sta ...

  4. JDOJ-P1260 VIJOS-P1083 小白逛公园

    首先,在这里给大家推荐一个网站,https://neooj.com:8082,这是我母校的网站 言归正传,题目描述 VIJOS-P1083 小白逛公园 Time Limit: 1 Sec  Memor ...

  5. [NOIP2017] 逛公园

    [NOIP2017] 逛公园 题目大意: 给定一张图,询问长度 不超过1到n的最短路长度加k 的1到n的路径 有多少条. 数据范围: 点数\(n \le 10^5\) ,边数\(m \le 2*10^ ...

  6. [NOIp 2017]逛公园

    Description 策策同学特别喜欢逛公园.公园可以看成一张$N$个点$M$条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,$N$号点是公园的出口,每条边有一个非负权值, 代表策策经 ...

  7. 【NOIP 2017】逛公园

    Description 策策同学特别喜欢逛公园.公园可以看成一张N个点M条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,N号点是公园的出口,每条边有一个非负权值, 代表策策经过这条边所要 ...

  8. 逛公园 [NOIP2017 D1T3] [记忆化搜索]

    Description 策策同学特别喜欢逛公园.公园可以看成一张N个点M条边构成的有向图,且没有自环和重边.其中1号点是公园的入口,N号点是公园的出口,每条边有一个非负权值,代表策策经过这条边所要花的 ...

  9. [luogu P3953] [noip2017 d1t3] 逛公园

    [luogu P3953] [noip2017 d1t3] 逛公园 题目描述 策策同学特别喜欢逛公园.公园可以看成一张$N$个点$M$条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,$N ...

随机推荐

  1. 推荐一款好看的Hexo主题Ayer

    介绍 Ayer 是一个干净且优雅的Hexo主题,自带响应式,加载速度很快,该有的功能都有,可配置项也很多,非常适合作为你的博客主题,主题内还附送了6张精美的高清壁纸.欢迎使用和Star支持,如果你在使 ...

  2. 44-创建 Machine

    对于 Docker Machine 来说,术语 Machine 就是运行 docker daemon 的主机.“创建 Machine” 指的就是在 host 上安装和部署 docker.先执行 doc ...

  3. [Go] 轻量服务器框架基础TCP服务模块

    框架要先把整体的结构定义好,一般都是在$GOPATH目录的src下建立自己的目录 zinterface是一些接口的定义 znet就是接口的具体实现 IServer.go package zinterf ...

  4. getOutputStream() has already been called for this response 从了解到解决

    一.背景说明        在tomcat的localhost.log日志中时长见到 getOutputStream() has already been called for this respon ...

  5. Mysql数据基本操作(增、删、改、查)

    一.数据库配置 # 通过配置文件统一配置的目的: 统一管理 服务端(mysqld).客户端(client) 1.配置mysqld(服务端)的编码为utf-8,再创建数据库的时候,默认编码都采用了utf ...

  6. Redis在Window下的安装部署

    一.下载 由于redis官方不支持windows,所以需要在github上下载window的版本:下载地址.redis约定版次版本号(即第一个小数点后的数字)为偶数的版本是稳定版本(如2.8,3.0) ...

  7. [灵魂拷问]MySQL面试高频100问(工程师方向)

    作者:呼延十 juejin.im/post/5d351303f265da1bd30596f9 前言 本文主要受众为开发人员,所以不涉及到MySQL的服务部署等操作,且内容较多,大家准备好耐心和瓜子矿泉 ...

  8. [CrackMe]160个CrackMe之015

    吾爱破解专题汇总:[反汇编练习]160个CrackME索引目录1~160建议收藏备用 一.破解 该破解比较简单,其是一个静态密码  2G83G35Hs2 ,输入进去即可破解. 1)栈定位法找到用户代码 ...

  9. Spring常用注解式开发

    1.组件注册@Configuration.@Bean给容器中注册组件. 注解,@Configuration告诉Spring这是一个配置类,相当于bean.xml配置文件. 注解,@Bean给Sprin ...

  10. (转)GitHub Desktop 拉取 GitHub上 Tag 版本代码

    转自:GitHub Desktop 拉取 GitHub上 Tag 版本代码 一直在使用 GitHub Desktop 图形化 git 管理工具,统一项目框架版本时需要切换到ThinkPHP Tag 分 ...