项目地址:Regex in Python

前两篇已经完成的写了一个基于NFA的正则表达式引擎了,下面要做的就是更近一步,把NFA转换为DFA,并对DFA最小化

DFA的定义

对于NFA转换为DFA的算法,主要就是将NFA中可以状态节点进行合并,进而让状态节点对于一个输入字符都有唯一的一个跳转节点

所以对于DFA的节点就含有一个nfa状态节点的集合和一个唯一的标识和对是否是接收状态的flag

class Dfa(object):
STATUS_NUM = 0 def __init__(self):
self.nfa_sets = []
self.accepted = False
self.status_num = -1 @classmethod
def nfas_to_dfa(cls, nfas):
dfa = cls()
for n in nfas:
dfa.nfa_sets.append(n)
if n.next_1 is None and n.next_2 is None:
dfa.accepted = True dfa.status_num = Dfa.STATUS_NUM
Dfa.STATUS_NUM = Dfa.STATUS_NUM + 1
return dfa

NFA转换为DFA

将NFA转换为DFA的最终目标是获得一张跳转表,这个和之前C语言编译的语法分析表有点像

这个函数就是NFA转换为DFA的全部算法了,主要逻辑就是:

  • 先利用之前的closure算法,计算出可以合并的NFA节点,然后生成一个DFA的节点
  • 然后对这个DFA集合进行遍历
  • 之后对于每个输入字符进行move操作,然后对得到的move集合再进行一次closure操作,这样就可以得到下一个DFA状态节点(这里还要进行一个判重的操作,就是可能当前DFA状态节点可能已经生成过了)
  • 然后将这两个节点的对应关系放入跳转表中
  • 这时候的DFA如果其中含有的NFA存在一个可接收的状态节点,那么当前的DFA的当然也是可接受状态了
def convert_to_dfa(nfa_start_node):
jump_table = list_dict(MAX_DFA_STATUS_NUM)
ns = [nfa_start_node]
n_closure = closure(ns)
dfa = Dfa.nfas_to_dfa(n_closure)
dfa_list.append(dfa) dfa_index = 0
while dfa_index < len(dfa_list):
dfa = dfa_list[dfa_index]
for i in range(ASCII_COUNT):
c = chr(i)
nfa_move = move(dfa.nfa_sets, c)
if nfa_move is not None:
nfa_closure = closure(nfa_move)
if nfa_closure is None:
continue
new_dfa = convert_completed(dfa_list, nfa_closure)
if new_dfa is None:
new_dfa = Dfa.nfas_to_dfa(nfa_closure)
dfa_list.append(new_dfa)
next_state = new_dfa.status_num
jump_table[dfa.status_num][c] = next_state
if new_dfa.accepted:
jump_table[new_dfa.status_num]['accepted'] = True
dfa_index = dfa_index + 1 return jump_table

DFA最小化

DFA最小化本质上是也是对状态节点的合并,然后分区

  1. 先根据是否为接收状态进行分区
  2. 再根据DFA跳转表的跳转关系对分区里的节点进行再次分区,如果当前DFA节点跳转后的状态节点也位于同一个分区中,证明它们可以被归为一个分区
  3. 重复上面的算法

Dfa分区定义

DfaGroup和之前的定义大同小异,都是有一个唯一的标识和一个放DFA状态节点的list

class DfaGroup(object):
GROUP_COUNT = 0 def __init__(self):
self.set_count()
self.group = [] def set_count(self):
self.group_num = DfaGroup.GROUP_COUNT
DfaGroup.GROUP_COUNT = DfaGroup.GROUP_COUNT + 1 def remove(self, element):
self.group.remove(element) def add(self, element):
self.group.append(element) def get(self, count):
if count > len(self.group) - 1:
return None
return self.group[count] def __len__(self):
return len(self.group)

Minimize DFA

partition是最小化DFA算法最重要的部分

  • 会先从跳转表中找出当前DFA对应跳转的下一个状态节点
  • first是用来比较的DFA节点
  • 如果next节点的下一个状态和first节点的下一状态不在同一分区下的话,说明它们不可以在同一个分区
  • 就重新创建一个新分区

所以其实DFA最小化做的就是合并相同的下一个跳转状态的节点

def partition(jump_table, group, first, next, ch):
goto_first = jump_table[first.status_num].get(ch)
goto_next = jump_table[next.status_num].get(ch) if dfa_in_group(goto_first) != dfa_in_group(goto_next):
new_group = DfaGroup()
group_list.append(new_group)
group.remove(next)
new_group.add(next)
return True return False

创建跳转表

再分完区之后节点和节点间的跳转就变成了区和区间的跳转了

  • 遍历DFA集合
  • 从之前的跳转表中找到相应的节点和相应的跳转关系
  • 然后找出它们对应的分区,即转换为分区和分区之间的跳转
def create_mindfa_table(jump_table):
trans_table = list_dict(ASCII_COUNT)
for dfa in dfa_list:
from_dfa = dfa.status_num
for i in range(ASCII_COUNT):
ch = chr(i)
to_dfa = jump_table[from_dfa].get(ch)
if to_dfa:
from_group = dfa_in_group(from_dfa)
to_group = dfa_in_group(to_dfa)
trans_table[from_group.group_num][ch] = to_group.group_num
if dfa.accepted:
from_group = dfa_in_group(from_dfa)
trans_table[from_group.group_num]['accepted'] = True return trans_table

匹配输入字符串

利用跳转表进行对输入字符串的匹配的逻辑非常简单

  • 遍历输入的字符串
  • 拿到当前状态对应的输入的跳转关系
  • 进行跳转或者完成匹配
def dfa_match(input_string, jump_table, minimize=True):
if minimize:
cur_status = dfa_in_group(0).group_num
else:
cur_status = 0
for i, c in enumerate(input_string):
jump_dict = jump_table[cur_status]
if jump_dict:
js = jump_dict.get(c)
if js is None:
return False
else:
cur_status = js
if i == len(input_string) - 1 and jump_dict.get('accepted'):
return True return jump_table[cur_status].get('accepted') is not None

总结

到此已经完成了一个简单的正则表达式引擎的所有过程

正则表达式 -> NFA -> DFA -> DFA最小化 -> 进行匹配

实现一个正则表达式引擎in Python(三)的更多相关文章

  1. 实现一个正则表达式引擎in Python(一)

    前言 项目地址:Regex in Python 开学摸鱼了几个礼拜,最近几天用Python造了一个正则表达式引擎的轮子,在这里记录分享一下. 实现目标 实现了所有基本语法 st = 'AS342abc ...

  2. 实现一个正则表达式引擎in Python(二)

    项目地址:Regex in Python 在看一下之前正则的语法的 BNF 范式 group ::= ("(" expr ")")* expr ::= fact ...

  3. 1000行代码徒手写正则表达式引擎【1】--JAVA中正则表达式的使用

    简介: 本文是系列博客的第一篇,主要讲解和分析正则表达式规则以及JAVA中原生正则表达式引擎的使用.在后续的文章中会涉及基于NFA的正则表达式引擎内部的工作原理,并在此基础上用1000行左右的JAVA ...

  4. Python的regex模块——更强大的正则表达式引擎

    Python自带了正则表达式引擎(内置的re模块),但是不支持一些高级特性,比如下面这几个: 固化分组    Atomic grouping 占有优先量词    Possessive quantifi ...

  5. 正则表达式引擎的构建——基于编译原理DFA(龙书第三章)——3 计算4个函数

    整个引擎代码在github上,地址为:https://github.com/sun2043430/RegularExpression_Engine.git nullable, firstpos, la ...

  6. 基于ε-NFA的正则表达式引擎

    正则表达式几乎每个程序员都会用到,对于这么常见的一个语言,有没有想过怎么去实现一个呢?乍一想,也许觉得困难,实际上实现一个正则表达式的引擎并没有想像中的复杂,<编译原理>一书中有一章专门讲 ...

  7. 正则表达式—RegEx(RegularExpressio)(三)

    今日随笔,继续写一点关于正则表达式的 知识.前两天介绍了正则表达式验证匹配,提取等一些基本的知识,今天继续分享下它的另一个强大的应用:替换(replace). 开始之前,还是要补一下昨天的内容. 在我 ...

  8. (转)正则表达式—RegEx(RegularExpressio)(三)

    原文地址:http://www.cnblogs.com/feng-c-x/archive/2013/09/05/3302465.html 今日随笔,继续写一点关于正则表达式的 知识.前两天介绍了正则表 ...

  9. 正则表达式引擎:nfa的转换规则。

    正则表达式引擎:nfa的转换规则. 正则到nfa 前言 在写代码的过程中,本来还想根据龙书上的说明来实现re到nfa的转换.可是写代码的时候发现,根据课本来会生成很多的无用过渡节点和空转换边,需要许多 ...

随机推荐

  1. npm install 安装很慢

    npm install 安装很慢 设置国内镜像 npm config set registry https://registry.npm.taobao.org npm install

  2. vulnhub-XXE靶机渗透

    下载链接:https://download.vulnhub.com/xxe/XXE.zip   0x01 确定目标IP 目标网络模式默认为net模式,无需修改 使用arp-scan或者netdisco ...

  3. scrapy学习(完全版)

    scrapy1.6中文文档 scrapy1.6中文文档 scrapy中文文档 Scrapy框架 下载页面 解析页面 并发 深度 安装 scrapy学习教程 如果安装了anconda,可以在anacon ...

  4. vsftpd 530 Login incorrect问题处理

    vsftpd 530 login incorrect 的N中情况 1.密码错误. 2.检查/etc/vsftpd/vsftpd.conf配置 vim /etc/vsftpd/vsftpd.conf 看 ...

  5. python 37 同步、异步调用

    目录 1. 阻塞与非阻塞 2. 同步与异步 2.1 异步调用 2.2 同步调用 2.3 异步调用回收的第一种方式 3. 异步调用+回调函数 3.1 requests模块 3.2 异步调用回收的第二种方 ...

  6. python 05 字典

    [TOC] 字典——dict { } 字典是无序,可变的数据类型. 字典:用于存储数据,存储大量数据,字典要比列表快:将数据和数据之间进行关联. 1. 定义:  dic = {键:值,键:值}  #每 ...

  7. 设计模式(C#)——05适配器模式

    推荐阅读:  我的CSDN  我的博客园  QQ群:704621321       自然界有一条规则--适者生存.意思是生物要使用自然界的变化:在程序界中则需要新环境调用现存对象.那么,如何在新环境中 ...

  8. HDU 6059

    题意略. 思路:我们要想令 A[i] ^ A[j] < A[j] ^ A[k](i < j < k),由于A[i]和A[k]都要 ^ A[j],所以我们只需研究一下i,k这两个数之间 ...

  9. Python--高阶函数、函数嵌套、名称空间及变量作用域、闭包、装饰器

    1.高阶函数(map/reduce/filter) 高阶函数是指函数的参数可以是函数 这篇总结几个常用的高阶函数:map/reduce/filter map函数.reduce函数.filter函数都是 ...

  10. Mybatis案例升级版——小案例大道理

    纯Mybatis案例升级版——小案例大道理 前言: 这几天看了一本书<原则>,在上面看到了一句话叫“每个人都把自己眼界的局限当成世界的局限”,大学生是