Kibana --> Getting Started -->Building your own dashboard
https://www.elastic.co/guide/en/kibana/6.6/tutorial-build-dashboard.html
Building your own dashboard
Ready to load some data and build a dashboard? This tutorial shows you how to:
- Load a data set into Elasticsearch
- Define an index pattern
- Discover and explore the data
- Visualize the data
- Add visualizations to a dashboard
- Inspect the data behind a visualization
Loading sample data
This tutorial requires three data sets:
- The complete works of William Shakespeare, suitably parsed into fields. Download
shakespeare.json. - A set of fictitious accounts with randomly generated data. Download
accounts.zip. - A set of randomly generated log files. Download
logs.jsonl.gz.
Two of the data sets are compressed. To extract the files, use these commands:
unzip accounts.zip
gunzip logs.jsonl.gz
Structure of the data sets
The Shakespeare data set has this structure:
{
"line_id": INT,
"play_name": "String",
"speech_number": INT,
"line_number": "String",
"speaker": "String",
"text_entry": "String",
}
The accounts data set is structured as follows:
{
"account_number": INT,
"balance": INT,
"firstname": "String",
"lastname": "String",
"age": INT,
"gender": "M or F",
"address": "String",
"employer": "String",
"email": "String",
"city": "String",
"state": "String"
}
The logs data set has dozens of different fields. Here are the notable fields for this tutorial:
{
"memory": INT,
"geo.coordinates": "geo_point"
"@timestamp": "date"
}
Set up mappings
Before you load the Shakespeare and logs data sets, you must set up mappings for the fields.
Mappings divide the documents in the index into logical groups and specify the characteristics of the fields.
These characteristics include the searchability of the field and whether it’s tokenized, or broken up into separate words.
In Kibana Dev Tools > Console, set up a mapping for the Shakespeare data set:
PUT /shakespeare
{
"mappings": {
"doc": {
"properties": {
"speaker": {"type": "keyword"},
"play_name": {"type": "keyword"},
"line_id": {"type": "integer"},
"speech_number": {"type": "integer"}
}
}
}
}
This mapping specifies field characteristics for the data set:
- The
speakerandplay_namefields are keyword fields. These fields are not analyzed. The strings are treated as a single unit even if they contain multiple words. - The
line_idandspeech_numberfields are integers.
响应
{
"acknowledged" : true,
"shards_acknowledged" : true,
"index" : "shakespeare"
}
The logs data set requires a mapping to label the latitude and longitude pairs as geographic locations by applying the geo_point type.
PUT /logstash-2015.05.18
{
"mappings": {
"log": {
"properties": {
"geo": {
"properties": {
"coordinates": {
"type": "geo_point"
}
}
}
}
}
}
}
{
"acknowledged" : true,
"shards_acknowledged" : true,
"index" : "logstash-2015.05.18"
}
The accounts data set doesn’t require any mappings.
查询一下当前的所有indices
GET /_cat/indices?v HTTP/1.1
Host: localhost:9200
新导入的logstash-2015.05.18,logstash-2015.05.19,logstash-2015.05.20这个三个index的docs.count的个数都是0。
bank是之前在学习elastic search时候导入的
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
yellow open logstash-2015.05. dL2ZaIelR_uvKMnPYy_8Eg .2kb .2kb
yellow open logstash-2015.05. M1PWnqXLRgClt-iwqN4OUg .2kb .2kb
yellow open customer p6H8gEOdQAWBuSN2HDEjZA .4kb .4kb
yellow open shakespeare I8mqiFkkTdK9IlcarIZA4A .2kb .2kb
yellow open bank l45mhl-7QNibqbmbi2Jmbw .1kb .1kb
green open .kibana_1 CUsQj9zkSCSC-XiDJgXYQQ .6kb .6kb
yellow open logstash-2015.05. 14rDFdQFTQK-GNgDXtlmeQ .2kb .2kb
Load the data sets
At this point, you’re ready to use the Elasticsearch bulk API to load the data sets:
curl -H 'Content-Type: application/x-ndjson' -XPOST 'localhost:9200/bank/account/_bulk?pretty' --data-binary @accounts.json
curl -H 'Content-Type: application/x-ndjson' -XPOST 'localhost:9200/shakespeare/doc/_bulk?pretty' --data-binary @shakespeare_6.0.json
curl -H 'Content-Type: application/x-ndjson' -XPOST 'localhost:9200/_bulk?pretty' --data-binary @logs.jsonl
Or for Windows users, in Powershell:
Invoke-RestMethod "http://localhost:9200/bank/account/_bulk?pretty" -Method Post -ContentType 'application/x-ndjson' -InFile "accounts.json"
Invoke-RestMethod "http://localhost:9200/shakespeare/doc/_bulk?pretty" -Method Post -ContentType 'application/x-ndjson' -InFile "shakespeare_6.0.json"
Invoke-RestMethod "http://localhost:9200/_bulk?pretty" -Method Post -ContentType 'application/x-ndjson' -InFile "logs.jsonl"
可以保存为一个ps1的脚本文件,然后直接运行这个脚本文件进行导入
These commands might take some time to execute, depending on the available computing resources.
Verify successful loading:
再次查询所有的index
GET /_cat/indices?v
Your output should look similar to this:
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
yellow open logstash-2015.05. dL2ZaIelR_uvKMnPYy_8Eg .5mb .5mb
yellow open logstash-2015.05. M1PWnqXLRgClt-iwqN4OUg .1mb .1mb
yellow open customer p6H8gEOdQAWBuSN2HDEjZA .4kb .4kb
yellow open shakespeare I8mqiFkkTdK9IlcarIZA4A .5mb .5mb
yellow open bank l45mhl-7QNibqbmbi2Jmbw .1kb .1kb
green open .kibana_1 CUsQj9zkSCSC-XiDJgXYQQ .6kb .6kb
yellow open logstash-2015.05. 14rDFdQFTQK-GNgDXtlmeQ .6mb .6mb
Defining your index patterns
Index patterns tell Kibana which Elasticsearch indices you want to explore. An index pattern can match the name of a single index, or include a wildcard (*) to match multiple indices.
For example, Logstash typically creates a series of indices in the format logstash-YYYY.MMM.DD. To explore all of the log data from May 2018, you could specify the index pattern logstash-2018.05*.
You’ll create patterns for the Shakespeare data set, which has an index named shakespeare, and the accounts data set, which has an index named bank. These data sets don’t contain time-series data.
- In Kibana, open Management, and then click Index Patterns.
- If this is your first index pattern, the Create index pattern page opens automatically. Otherwise, click Create index pattern in the upper left.
Enter
shakes*in the Index pattern field.
Kibana --> Getting Started -->Building your own dashboard的更多相关文章
- 使用Kibana 分析Nginx 日志并在 Dashboard上展示
一.Kibana之Visualize 功能 在首页上Visualize 标签页用来设计可视化图形.你可以保存之前在discovery中的搜索来进行画图,然后保存该visualize,或者加载合并到 d ...
- Kibana:如何周期性地为 Dashboard 生成 PDF Report
转载自:https://blog.csdn.net/UbuntuTouch/article/details/108449775 按照上面的方式填写.记得把之前的 URL 拷贝到 webhook 下的 ...
- How To Use Logstash and Kibana To Centralize Logs On CentOS 6
原文链接:https://www.digitalocean.com/community/tutorials/how-to-use-logstash-and-kibana-to-centralize-l ...
- 性能优化工具 MVC Mini Profiler
性能优化工具 MVC Mini Profiler MVC MiniProfiler是Stack Overflow团队设计的一款对ASP.NET MVC.WebForm 以及WCF 的性能分析的小程 ...
- ELK学习笔记之F5利用EELK进行应用数据挖掘系列(2)-DNS
0x00 概述 很多客户使用GTM/DNS为企业业务提供动态智能解析,解决应用就近性访问.优选问题.对于已经实施多数据中心双活的客户,则会使用GSLB提供双活流量调度.DNS作为企业业务访问的指路者, ...
- ELK+Redis 解析Nginx日志
一.ELK简介 Elk是指logstash,elasticsearch,kibana三件套,我们一般使用它们做日志分析. ELK工作原理图: 简单来讲ELK具体的工作流程就是客户端的logstash ...
- [Metricbeat] Metricbeat监控golang服务器
0x0 前言 最近这几天研究了一下ElasticSearch相关的技术栈.前面一篇转发了别人些的非常详细的ElasticSearch和Kibana搭建的过程.发现Elastic家族还有Metricbe ...
- I am a legend: Hacking Hearthstone with machine-learning Defcon talk wrap-up
I am a legend: Hacking Hearthstone with machine-learning Defcon talk wrap-up: video and slides avail ...
- Building real-time dashboard applications with Apache Flink, Elasticsearch, and Kibana
https://www.elastic.co/cn/blog/building-real-time-dashboard-applications-with-apache-flink-elasticse ...
随机推荐
- URL List by Category
URLs List AI https://www.cnblogs.com/zlel/p/8882129.html Javascript Promise http://liubin.org/promis ...
- STL之stack容器
1.stack容器 1) stack是堆栈容器,是一种“先进后出”的容器. 2)stack是简单地装饰deque容器而成为另外的一种容器. 3)头文件.#include <stack> 2 ...
- C# & ASP.NET Core 入门官方资料汇总
借助给公司实习生培训事宜,整理了一些微软官方的适合新同学入门的资料,这里分享一下: 工具: Visual Studio 2017 Community 版本下载地址:https://www.visual ...
- 蒙特卡洛(Monte Carlo)法求定积分
https://blog.csdn.net/baimafujinji/article/details/53869358
- Android百大框架排行榜
Android百大框架排行榜 15类Android通用流行框架 - 流风,飘然的风 - 博客园https://www.cnblogs.com/zdz8207/p/android-opensource- ...
- 以太坊智能合约开发,Web3.js API 中文文档 ethereum web3.js入门说明
以太坊智能合约开发,Web3.js API 中文文档 ethereum web3.js入门说明 为了让你的Ðapp运行上以太坊,一种选择是使用web3.js library提供的web3.对象.底层实 ...
- PHP HTML混写,PHP中把大块HTML文本直接赋值给字符串变量的方法
PHP HTML混写,PHP中把大块HTML文本直接赋值给字符串变量的方法 使用HEREDOC/NOWDOCHEREDOC和NOWDOC是PHP5.3开始支持的一种新特性,它允许在程序中使用一种自定义 ...
- ELKF安装使用教程。elasticsearch+logstash+kibana+filebeta。
近期因工作需要学习了ELKF的安装和使用.网络上的中文我看大部分也比较老版本了,我想写一下,希望能给他人带来一点帮助.小弟不才,有错位之处,还请大家原谅指点. ELKF就是:elasticsearch ...
- 51Nod 1433 0和5
小K手中有n张牌,每张牌上有一个一位数的数,这个字数不是0就是5.小K从这些牌在抽出任意张(不能抽0张),排成一行这样就组成了一个数.使得这个数尽可能大,而且可以被90整除. 注意: 1.这个数没有前 ...
- 清明 DAY 1
数学基础 Part 1. 高精度计算 Part 2. 模意义下的运算 mod 对一个数取模,其实就是取余数 注意: • 无除法运算 • ...