Kibana --> Getting Started -->Building your own dashboard
https://www.elastic.co/guide/en/kibana/6.6/tutorial-build-dashboard.html
Building your own dashboard
Ready to load some data and build a dashboard? This tutorial shows you how to:
- Load a data set into Elasticsearch
- Define an index pattern
- Discover and explore the data
- Visualize the data
- Add visualizations to a dashboard
- Inspect the data behind a visualization
Loading sample data
This tutorial requires three data sets:
- The complete works of William Shakespeare, suitably parsed into fields. Download shakespeare.json.
- A set of fictitious accounts with randomly generated data. Download accounts.zip.
- A set of randomly generated log files. Download logs.jsonl.gz.
Two of the data sets are compressed. To extract the files, use these commands:
unzip accounts.zip
gunzip logs.jsonl.gz
Structure of the data sets
The Shakespeare data set has this structure:
{
    "line_id": INT,
    "play_name": "String",
    "speech_number": INT,
    "line_number": "String",
    "speaker": "String",
    "text_entry": "String",
}
The accounts data set is structured as follows:
{
    "account_number": INT,
    "balance": INT,
    "firstname": "String",
    "lastname": "String",
    "age": INT,
    "gender": "M or F",
    "address": "String",
    "employer": "String",
    "email": "String",
    "city": "String",
    "state": "String"
}
The logs data set has dozens of different fields. Here are the notable fields for this tutorial:
{
    "memory": INT,
    "geo.coordinates": "geo_point"
    "@timestamp": "date"
}
Set up mappings
Before you load the Shakespeare and logs data sets, you must set up mappings for the fields.
Mappings divide the documents in the index into logical groups and specify the characteristics of the fields.
These characteristics include the searchability of the field and whether it’s tokenized, or broken up into separate words.
In Kibana Dev Tools > Console, set up a mapping for the Shakespeare data set:
PUT /shakespeare
{
"mappings": {
"doc": {
"properties": {
"speaker": {"type": "keyword"},
"play_name": {"type": "keyword"},
"line_id": {"type": "integer"},
"speech_number": {"type": "integer"}
}
}
}
}
This mapping specifies field characteristics for the data set:
- The speakerandplay_namefields are keyword fields. These fields are not analyzed. The strings are treated as a single unit even if they contain multiple words.
- The line_idandspeech_numberfields are integers.
响应
{
  "acknowledged" : true,
  "shards_acknowledged" : true,
  "index" : "shakespeare"
}
The logs data set requires a mapping to label the latitude and longitude pairs as geographic locations by applying the geo_point type.
PUT /logstash-2015.05.18
{
"mappings": {
"log": {
"properties": {
"geo": {
"properties": {
"coordinates": {
"type": "geo_point"
}
}
}
}
}
}
}
{
  "acknowledged" : true,
  "shards_acknowledged" : true,
  "index" : "logstash-2015.05.18"
}
The accounts data set doesn’t require any mappings.
查询一下当前的所有indices
GET /_cat/indices?v HTTP/1.1
Host: localhost:9200
新导入的logstash-2015.05.18,logstash-2015.05.19,logstash-2015.05.20这个三个index的docs.count的个数都是0。
bank是之前在学习elastic search时候导入的
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
yellow open logstash-2015.05. dL2ZaIelR_uvKMnPYy_8Eg .2kb .2kb
yellow open logstash-2015.05. M1PWnqXLRgClt-iwqN4OUg .2kb .2kb
yellow open customer p6H8gEOdQAWBuSN2HDEjZA .4kb .4kb
yellow open shakespeare I8mqiFkkTdK9IlcarIZA4A .2kb .2kb
yellow open bank l45mhl-7QNibqbmbi2Jmbw .1kb .1kb
green open .kibana_1 CUsQj9zkSCSC-XiDJgXYQQ .6kb .6kb
yellow open logstash-2015.05. 14rDFdQFTQK-GNgDXtlmeQ .2kb .2kb
Load the data sets
At this point, you’re ready to use the Elasticsearch bulk API to load the data sets:
curl -H 'Content-Type: application/x-ndjson' -XPOST 'localhost:9200/bank/account/_bulk?pretty' --data-binary @accounts.json
curl -H 'Content-Type: application/x-ndjson' -XPOST 'localhost:9200/shakespeare/doc/_bulk?pretty' --data-binary @shakespeare_6.0.json
curl -H 'Content-Type: application/x-ndjson' -XPOST 'localhost:9200/_bulk?pretty' --data-binary @logs.jsonl
Or for Windows users, in Powershell:
Invoke-RestMethod "http://localhost:9200/bank/account/_bulk?pretty" -Method Post -ContentType 'application/x-ndjson' -InFile "accounts.json"
Invoke-RestMethod "http://localhost:9200/shakespeare/doc/_bulk?pretty" -Method Post -ContentType 'application/x-ndjson' -InFile "shakespeare_6.0.json"
Invoke-RestMethod "http://localhost:9200/_bulk?pretty" -Method Post -ContentType 'application/x-ndjson' -InFile "logs.jsonl"
可以保存为一个ps1的脚本文件,然后直接运行这个脚本文件进行导入
These commands might take some time to execute, depending on the available computing resources.
Verify successful loading:
再次查询所有的index
GET /_cat/indices?v
Your output should look similar to this:
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
yellow open logstash-2015.05. dL2ZaIelR_uvKMnPYy_8Eg .5mb .5mb
yellow open logstash-2015.05. M1PWnqXLRgClt-iwqN4OUg .1mb .1mb
yellow open customer p6H8gEOdQAWBuSN2HDEjZA .4kb .4kb
yellow open shakespeare I8mqiFkkTdK9IlcarIZA4A .5mb .5mb
yellow open bank l45mhl-7QNibqbmbi2Jmbw .1kb .1kb
green open .kibana_1 CUsQj9zkSCSC-XiDJgXYQQ .6kb .6kb
yellow open logstash-2015.05. 14rDFdQFTQK-GNgDXtlmeQ .6mb .6mb
Defining your index patterns
Index patterns tell Kibana which Elasticsearch indices you want to explore. An index pattern can match the name of a single index, or include a wildcard (*) to match multiple indices.
For example, Logstash typically creates a series of indices in the format logstash-YYYY.MMM.DD. To explore all of the log data from May 2018, you could specify the index pattern logstash-2018.05*.
You’ll create patterns for the Shakespeare data set, which has an index named shakespeare, and the accounts data set, which has an index named bank. These data sets don’t contain time-series data.
- In Kibana, open Management, and then click Index Patterns.
- If this is your first index pattern, the Create index pattern page opens automatically. Otherwise, click Create index pattern in the upper left.
- Enter - shakes*in the Index pattern field.
Kibana --> Getting Started -->Building your own dashboard的更多相关文章
- 使用Kibana 分析Nginx 日志并在 Dashboard上展示
		一.Kibana之Visualize 功能 在首页上Visualize 标签页用来设计可视化图形.你可以保存之前在discovery中的搜索来进行画图,然后保存该visualize,或者加载合并到 d ... 
- Kibana:如何周期性地为 Dashboard 生成 PDF Report
		转载自:https://blog.csdn.net/UbuntuTouch/article/details/108449775 按照上面的方式填写.记得把之前的 URL 拷贝到 webhook 下的 ... 
- How To Use Logstash and Kibana To Centralize Logs On CentOS 6
		原文链接:https://www.digitalocean.com/community/tutorials/how-to-use-logstash-and-kibana-to-centralize-l ... 
- 性能优化工具 MVC Mini Profiler
		性能优化工具 MVC Mini Profiler MVC MiniProfiler是Stack Overflow团队设计的一款对ASP.NET MVC.WebForm 以及WCF 的性能分析的小程 ... 
- ELK学习笔记之F5利用EELK进行应用数据挖掘系列(2)-DNS
		0x00 概述 很多客户使用GTM/DNS为企业业务提供动态智能解析,解决应用就近性访问.优选问题.对于已经实施多数据中心双活的客户,则会使用GSLB提供双活流量调度.DNS作为企业业务访问的指路者, ... 
- ELK+Redis 解析Nginx日志
		一.ELK简介 Elk是指logstash,elasticsearch,kibana三件套,我们一般使用它们做日志分析. ELK工作原理图: 简单来讲ELK具体的工作流程就是客户端的logstash ... 
- [Metricbeat] Metricbeat监控golang服务器
		0x0 前言 最近这几天研究了一下ElasticSearch相关的技术栈.前面一篇转发了别人些的非常详细的ElasticSearch和Kibana搭建的过程.发现Elastic家族还有Metricbe ... 
- I am a legend: Hacking Hearthstone with machine-learning Defcon talk wrap-up
		I am a legend: Hacking Hearthstone with machine-learning Defcon talk wrap-up: video and slides avail ... 
- Building real-time dashboard applications with Apache Flink, Elasticsearch, and Kibana
		https://www.elastic.co/cn/blog/building-real-time-dashboard-applications-with-apache-flink-elasticse ... 
随机推荐
- HDU 1014 Uniform Generator(题解)
			Uniform Generator Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ... 
- hdu5064 DLX可重复覆盖+二分
			这题题意是 给了n个城市 在其中小于等于k个城市建立机场然后 使得最远的那个离机场的城市距离最短 二分答案 ,我们对于每次的mid 重新建图然后再来一次DLX,每个点可以覆盖的点建立一条联系就ok了 ... 
- kalinux 换源
			1.系统使用第一步建议先换源,否则将出现很多未知问题 #以下两个2选1,打开要编辑的源 sudo leafpad /etc/apt/sources.list sudo gedit /etc/apt/s ... 
- vue中使用第三方UI库的移动端rem适配方案
			需求:使用vue-cli脚手架搭建项目,并且使用第三方的UI库(比如vant,mint ui)的时候,因为第三方库用的都是用px单位,无法使用rem适配不同设备的屏幕. 解决办法:使用px2rem-l ... 
- 使用AJAX技术发送异步请求,HTTP服务端推送
			使用AJAX技术发送异步请求 什么是AJAX AJAX指一步Javascript和XML(Asynchronous JavaScript And XML),它是一些列技术的组合,简单来说AJAX基于X ... 
- 360浏览器有个 谷歌访问助手(插件管理里搜谷歌即可) 可以免费访问:谷歌搜索,Google+ gmail
			360浏览器有个 谷歌访问助手(插件管理里搜谷歌即可) 可以免费访问:谷歌搜索,Google+ gmail 
- spring boot 概念
			最近新版本迭代,一直在弄框架替换和新技术实现的事儿. 本来想仔细介绍一下Spring Boot的各种东西,后来发现没啥写的,Spring Boot 说白了就是把你开发过程中用到的各种框架给你封装了一下 ... 
- vue中组件通信之父子通信:props(组件传参)
			实例一: <div id="app"> <alert msg="hhhhhhh"></alert> </div> ... 
- Zsh和oh my zsh的安装和使用
			Zsh 兼容 Bash,据传说 99% 的 Bash 操作 和 Zsh 是相同的,默认 CentOS / Ubuntu / Mac 系统用的是 Bash,倒也不是说 Bash 不好,而是说我们有更好的 ... 
- docker log directory
			Ubuntu - /var/log/upstart/docker.log Boot2Docker - /var/log/docker.log Debian GNU/Linux - /var/log/d ... 
