上一张效果图,渣画质,能看就好

功能说明:

人脸识别使用的是虹软的FreeSDK,包含人脸追踪,人脸检测,人脸识别,年龄、性别检测功能,其中本demo只使用了FT和FR(人脸追踪和人脸识别),封装了开启相机和人脸追踪、识别功能在FaceCameraHelper中。

实现逻辑:

打开相机,监听预览数据回调进行人脸追踪,且为每个检测到的人脸都分配一个trackID(上下帧位置变化不大的人脸框可认为是同一个人脸,具体实现的逻辑可见代码),同时,为了人脸搜索,为每个trackID都分配一个状态(识别中,识别失败,识别通过)、姓名,识别通过则在人脸框上显示姓名,否则只显示trackID(本demo没配服务端,只做了模拟操作)。流程说明见下图。

FaceCameraHelper包含的接口:

public interface FaceTrackListener {

/**
* 回传相机预览数据和人脸框位置
*
* @param nv21 相机预览数据
* @param ftFaceList 待处理的人脸列表
* @param trackIdList 人脸追踪ID列表
*/
void onPreviewData(byte[] nv21, List<AFT_FSDKFace> ftFaceList, List<Integer> trackIdList); /**
* 当出现异常时执行
*
* @param e 异常信息
*/
void onFail(Exception e); /**
* 当相机打开时执行
*
* @param camera 相机实例
*/
void onCameraOpened(Camera camera); /**
* 根据自己的需要可以删除部分人脸,比如指定区域、留下最大人脸等
*
* @param ftFaceList 人脸列表
* @param trackIdList 人脸追踪ID列表
*/
void adjustFaceRectList(List<AFT_FSDKFace> ftFaceList, List<Integer> trackIdList); /**
* 请求人脸特征后的回调
*
* @param frFace 人脸特征数据
* @param requestId 请求码
*/
void onFaceFeatureInfoGet(@Nullable AFR_FSDKFace frFace, Integer requestId);
} ```
FT人脸框绘制并回调数据:

  

@Override
public void onPreviewFrame(byte[] nv21, Camera camera) {
if (faceTrackListener != null) {
ftFaceList.clear();
int ftCode = ftEngine.AFT_FSDK_FaceFeatureDetect(nv21, previewSize.width, previewSize.height, AFT_FSDKEngine.CP_PAF_NV21, ftFaceList).getCode();
if (ftCode != 0) {
faceTrackListener.onFail(new Exception("ft failed,code is " + ftCode));
}
refreshTrackId(ftFaceList);
faceTrackListener.adjustFaceRectList(ftFaceList, currentTrackIdList);
if (surfaceViewRect != null) {
Canvas canvas = surfaceViewRect.getHolder().lockCanvas();
if (canvas == null) {
faceTrackListener.onFail(new Exception("can not get canvas of surfaceViewRect"));
return;
}
canvas.drawColor(0, PorterDuff.Mode.CLEAR);
if (ftFaceList.size() > 0) {
for (int i = 0; i < ftFaceList.size(); i++) {
Rect adjustedRect = TrackUtil.adjustRect(new Rect(ftFaceList.get(i).getRect()), previewSize.width, previewSize.height, surfaceWidth, surfaceHeight, cameraOrientation, mCameraId);
TrackUtil.drawFaceRect(canvas, adjustedRect, faceRectColor, faceRectThickness, currentTrackIdList.get(i), nameMap.get(currentTrackIdList.get(i)));
}
}
surfaceViewRect.getHolder().unlockCanvasAndPost(canvas);
} faceTrackListener.onPreviewData(nv21, ftFaceList, currentTrackIdList);
}
}

  

大多数设备相机预览数据图像的朝向在横屏时为0度。其他情况按逆时针依次增加90度,因此人脸框的绘制需要做同步转化。CameraID为0时,也就是后置摄像头情况,相机预览数据的显示为原画面,而CameraID为1时,也就是前置摄像头情况,相机的预览画面显示为镜像画面,适配的代码:

/**
* @param rect FT人脸框
* @param previewWidth 相机预览的宽度
* @param previewHeight 相机预览高度
* @param canvasWidth 画布的宽度
* @param canvasHeight 画布的高度
* @param cameraOri 相机预览方向
* @param mCameraId 相机ID
* @return
*/
static Rect adjustRect(Rect rect, int previewWidth, int previewHeight, int canvasWidth, int canvasHeight, int cameraOri, int mCameraId) {
if (rect == null) {
return null;
}
if (canvasWidth < canvasHeight) {
int t = previewHeight;
previewHeight = previewWidth;
previewWidth = t;
} float horizontalRatio;
float verticalRatio;
if (cameraOri == 0 || cameraOri == 180) {
horizontalRatio = (float) canvasWidth / (float) previewWidth;
verticalRatio = (float) canvasHeight / (float) previewHeight;
} else {
horizontalRatio = (float) canvasHeight / (float) previewHeight;
verticalRatio = (float) canvasWidth / (float) previewWidth;
}
rect.left *= horizontalRatio;
rect.right *= horizontalRatio;
rect.top *= verticalRatio;
rect.bottom *= verticalRatio; Rect newRect = new Rect(); switch (cameraOri) {
case 0:
if (mCameraId == Camera.CameraInfo.CAMERA_FACING_FRONT) {
newRect.left = canvasWidth - rect.right;
newRect.right = canvasWidth - rect.left;
} else {
newRect.left = rect.left;
newRect.right = rect.right;
}
newRect.top = rect.top;
newRect.bottom = rect.bottom;
break;
case 90:
newRect.right = canvasWidth - rect.top;
newRect.left = canvasWidth - rect.bottom;
if (mCameraId == Camera.CameraInfo.CAMERA_FACING_FRONT) {
newRect.top = canvasHeight - rect.right;
newRect.bottom = canvasHeight - rect.left;
} else {
newRect.top = rect.left;
newRect.bottom = rect.right;
}
break;
case 180:
newRect.top = canvasHeight - rect.bottom;
newRect.bottom = canvasHeight - rect.top;
if (mCameraId == Camera.CameraInfo.CAMERA_FACING_FRONT) {
newRect.left = rect.left;
newRect.right = rect.right;
} else {
newRect.left = canvasWidth - rect.right;
newRect.right = canvasWidth - rect.left;
}
break;
case 270:
newRect.left = rect.top;
newRect.right = rect.bottom;
if (mCameraId == Camera.CameraInfo.CAMERA_FACING_FRONT) {
newRect.top = rect.left;
newRect.bottom = rect.right;
} else {
newRect.top = canvasHeight - rect.right;
newRect.bottom = canvasHeight - rect.left;
}
break;
default:
break;
}
return newRect;
}

  

由于FR引擎不支持多线程调用,因此只能串行执行,若需要更高效的实现,可创建多个FREngine实例进行任务分配。

FR线程队列:

private LinkedBlockingQueue<FaceRecognizeRunnable> faceRecognizeRunnables = new LinkedBlockingQueue<FaceRecognizeRunnable>(MAX_FRTHREAD_COUNT);

  

FR线程:

public class FaceRecognizeRunnable implements Runnable {
private Rect faceRect;
private int width;
private int height;
private int format;
private int ori;
private Integer requestId;
private byte[]nv21Data;
public FaceRecognizeRunnable(byte[]nv21Data,Rect faceRect, int width, int height, int format, int ori, Integer requestId) {
if (nv21Data==null) {
return;
}
this.nv21Data = new byte[nv21Data.length];
System.arraycopy(nv21Data,0,this.nv21Data,0,nv21Data.length);
this.faceRect = new Rect(faceRect);
this.width = width;
this.height = height;
this.format = format;
this.ori = ori;
this.requestId = requestId;
} @Override
public void run() {
if (faceTrackListener!=null && nv21Data!=null) {
if (frEngine != null) {
AFR_FSDKFace frFace = new AFR_FSDKFace();
int frCode = frEngine.AFR_FSDK_ExtractFRFeature(nv21Data, width, height, format, faceRect, ori, frFace).getCode();
if (frCode == 0) {
faceTrackListener.onFaceFeatureInfoGet(frFace, requestId);
} else {
faceTrackListener.onFaceFeatureInfoGet(null, requestId);
faceTrackListener.onFail(new Exception("fr failed errorCode is " + frCode));
}
nv21Data = null;
}else {
faceTrackListener.onFaceFeatureInfoGet(null, requestId);
faceTrackListener.onFail(new Exception("fr failed ,frEngine is null" ));
}
if (faceRecognizeRunnables.size()>0){
executor.execute(faceRecognizeRunnables.poll());
}
}
}
}

  

上下帧是否为相同人脸的判断(trackID刷新):

/**
* 刷新trackId
*
* @param ftFaceList 传入的人脸列表
*/
public void refreshTrackId(List<AFT_FSDKFace> ftFaceList) {
currentTrackIdList.clear();
//每项预先填充-1
for (int i = 0; i < ftFaceList.size(); i++) {
currentTrackIdList.add(-1);
}
//前一次无人脸现在有人脸,填充新增TrackId
if (formerTrackIdList.size() == 0) {
for (int i = 0; i < ftFaceList.size(); i++) {
currentTrackIdList.set(i, ++currentTrackId);
}
} else {
//前后都有人脸,对于每一个人脸框
for (int i = 0; i < ftFaceList.size(); i++) {
//遍历上一次人脸框
for (int j = 0; j < formerFaceRectList.size(); j++) {
//若是同一张人脸
if (TrackUtil.isSameFace(SIMILARITY_RECT, formerFaceRectList.get(j), ftFaceList.get(i).getRect())) {
//记录ID
currentTrackIdList.set(i, formerTrackIdList.get(j));
break;
}
}
}
}
//上一次人脸框不存在此人脸
for (int i = 0; i < currentTrackIdList.size(); i++) {
if (currentTrackIdList.get(i) == -1) {
currentTrackIdList.set(i, ++currentTrackId);
}
}
formerTrackIdList.clear();
formerFaceRectList.clear();
for (int i = 0; i < ftFaceList.size(); i++) {
formerFaceRectList.add(new Rect(ftFaceList.get(i).getRect()));
formerTrackIdList.add(currentTrackIdList.get(i));
}
}

  

项目地址:https://github.com/wangshengyang1996/FaceTrackDemo

若有不当的地方望指出。

Android打开相机进行人脸识别,使用虹软人脸识别引擎的更多相关文章

  1. Android打开相机和打开相册

    打开相机 /** * 选择相机 */ private void showCamera() { // 跳转到系统照相机 Intent cameraIntent = new Intent(MediaSto ...

  2. 虹软人脸识别 - Android Camera实时人脸追踪画框适配

    在使用虹软人脸识别Android SDK的过程中 ,预览时一般都需要绘制人脸框,但是和PC平台相机应用不同,在Android平台相机进行应用开发还需要考虑前后置相机切换.设备横竖屏切换等情况,因此在人 ...

  3. Android 关于虹软人脸识别SDK引擎使用总结

    虹软 最近开放了人脸识别的SDK引擎(免费的哦),刚好有Android版的,就体验了一波.下面来说说Android版的SDK使用心得: ArcFace 虹软人脸认知引擎简介 目前开放的版本有人脸比对( ...

  4. 虹软人脸识别ArcFace2.0 Android SDK使用教程

    一.获取SDK 1.进入ArcFace2.0的申请地址 https://ai.arcsoft.com.cn/product/arcface.html 2.填写信息申请并提交 申请通过后即可下载SDK, ...

  5. 虹软人脸识别Android Sample Code

    AFR_FSDKInterface engine = new AFR_FSDKEngine(); //用来存放提取到的人脸信息, face_1 是注册的人脸,face_2 是要识别的人脸 AFR_FS ...

  6. 虹软人脸识别SDK在网络摄像头中的实际应用

    目前在人脸识别领域中,网络摄像头的使用很普遍,但接入网络摄像头和人脸识别SDK有一定门槛,在此篇中介绍过虹软人脸识别SDK的接入流程,本文着重介绍网络摄像头获取视频流并处理的流程(红色框内),以下内容 ...

  7. 虹软人脸识别 - faceId及IR活体检测的更新介绍

    虹软人脸识别 - faceId及IR活体检测的介绍 前几天虹软推出了 Android ArcFace 2.2版本的SDK,相比于2.1版本,2.2版本中的变化如下: VIDEO模式新增faceId(类 ...

  8. 虹软人脸识别 - faceId及IR活体检测的介绍

    虹软人脸识别 - faceId及IR活体检测的介绍 前几天虹软推出了 Android ArcFace 2.2版本的SDK,相比于2.1版本,2.2版本中的变化如下: VIDEO模式新增faceId(类 ...

  9. 虹软人脸识别SDK接入Milvus实现海量人脸快速检索

    一.背景 人脸识别是近年来最热门的计算机视觉领域的应用之一,而且现在已经出现了非常多的人脸识别算法,如:DeepID.FaceNet.DeepFace等等.人脸识别被广泛应用于景区.客运.酒店.办公室 ...

随机推荐

  1. django中的模型详解-1

    在说明django模型之前,首先来说明一下django的生命周期,也就是一个请求到达django是如何处理的.[暂时不包含中间件] 浏览器的请求---->到达django中的urls中找到对应的 ...

  2. selenium得到弹出窗口

    # 获取当前的页面窗口 first_handle = brower.current_window_handle handles = brower.window_handles for i in han ...

  3. Percona Server 5.6 安装TokuDB

    系统:Red Hat Enterprise Linux Server release 6.3 (Santiago) 数据库:Percona-Server-5.6.29-rel76.2-Linux.x8 ...

  4. 给PHP开启shmop扩展实现共享内存

    在项目开发中,想要实现PHP多个进程之间共享数据的功能,让客户端连接能够共享一个状态,需要开启共享内存函数shmop.如果预期考虑会遇到这方面需求,那么最好在编译PHP的时候添加--with-shmo ...

  5. 一致性哈希算法(适用于分库分表、RPC负载均衡)转

    在分布式应用中,应该来说使用到hash最多的地方就是rpc负载均衡和分库分表,通常对于正式意义上的分布式应用来说,扩容和收缩是一个半自动化的过程,在此期间,应用基本上是可用的,所以不能发生大规模动荡的 ...

  6. python框架相关问题

    面试其他篇 目录: 1.1

  7. 03:git常见报错解决方法

    1.1 git常见报错解决方法 1.warning: LF will be replaced by CRLF in .idea/workspace.xml. 参考博客:https://www.cnbl ...

  8. Linux-eval

    shell中eval的用法示例: 语 法:eval [参数] 功能说明:eval会对后面的[参数]进行两遍扫描,如果在第一遍扫面后cmdLine是一个普通命令,则执行此命令:如果cmdLine中含有变 ...

  9. centos在图形界面和命令行之间切换的快捷键是什么?

    答: ctrl+alt+F1 或者ctrl+alt+F2 1.当前处于图形界面时,按ctrl+alt+F2可进入命令行模式 2. 当前处于命令行模式,按ctrl+alt+F1可进入图形界面

  10. POJ 1679 The Unique MST 【判断最小生成树是否唯一】

    Description Given a connected undirected graph, tell if its minimum spanning tree is unique.  Defini ...