我们先把问题分成两部分, 一部分是把元素往前移, 另一部分是把元素往后移。对于一个 i 后的一个位置, 我们考虑前面哪个移到这里来最优。

我们设最优值为val,   val = max(a[ j ] * (i - j) - (sum[ i ] - sum[ j ]) 我们能发现这个能转换成斜率优化的形式如果 j 比 k 更优且 j > k 我们能得到,

((j * a[ j ] - sum[ j ])  - (k * a[ k ] - sum[ k ]))  < i *  (a[ j ] - a[ k ]) ,这时候我们发现(a[ j ] - a[ k ])的符号不知道, 因为 a 不是单调的。

是我们能发现有用的 a 一定是单调递增的, 我们考虑相邻的情况,如果前面的a大, 那么它和它后一个交换肯定变优。 这样就能斜率优化啦,

反过来的情况也是一样的。

#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ull unsigned long long using namespace std; const int N = 2e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ;
const double eps = 1e-;
const double PI = acos(-); int n, head = , rear, que[N];
LL a[N], sum[N], ans; inline double calc(int k, int j) {
return (((double)j * a[j] - sum[j]) - ((double)k * a[k] - sum[k])) / (a[j] - a[k]);
} int main() {
// freopen("text.in", "r", stdin);
scanf("%d", &n);
for(int i = ; i <= n; i++) {
scanf("%lld", &a[i]);
ans += i * a[i];
sum[i] = sum[i - ] + a[i];
}
LL tmp = ans;
for(int i = ; i <= n; i++) {
while(rear - head + >= && calc(que[head], que[head + ]) <= i) head++;
if(head <= rear) {
int who = que[head];
ans = max(ans, tmp + (i - who) * a[who] - sum[i] + sum[who]);
}
if(head > rear || (head <= rear && a[i] > a[que[rear]])) {
while(rear - head + >= && calc(que[rear - ], que[rear]) > calc(que[rear], i)) rear--;
que[++rear] = i;
}
} rear = ; head = ;
reverse(a + , a + + n);
for(int i = ; i <= n; i++) sum[i] = sum[i - ] + a[i];
for(int i = ; i <= n; i++) {
while(rear - head + >= && calc(que[head], que[head + ]) <= i) head++;
if(head <= rear) {
int who = que[head];
ans = max(ans, tmp + sum[i] - sum[who] - (i - who) * a[who]);
}
if(head > rear || (head <= rear && a[i] < a[que[rear]])) {
while(rear - head + >= && calc(que[rear - ], que[rear]) > calc(que[rear], i)) rear--;
que[++rear] = i;
}
}
printf("%lld\n", ans);
return ;
} /*
*/

Codeforces 631E Product Sum 斜率优化的更多相关文章

  1. @codeforces - 631E@ Product Sum

    目录 @desription@ @solution@ @accepted code@ @details@ @desription@ 给定一个序列 a,定义它的权值 \(c = \sum_{i=1}^{ ...

  2. Codeforces 311B Cats Transport 斜率优化dp

    Cats Transport 出发时间居然能是负的,我服了... 卡了我十几次, 我一直以为斜率优化写搓了. 我们能得出dp方程式 dp[ i ][ j ] = min(dp[ k ][ j - 1 ...

  3. Codeforces 1179D 树形DP 斜率优化

    题意:给你一颗树,你可以在树上添加一条边,问添加一条边之后的简单路径最多有多少条?简单路径是指路径中的点只没有重复. 思路:添加一条边之后,树变成了基环树.容易发现,以基环上的点为根的子树的点中的简单 ...

  4. Codeforces Round #344 (Div. 2) E. Product Sum 二分斜率优化DP

    E. Product Sum   Blake is the boss of Kris, however, this doesn't spoil their friendship. They often ...

  5. Codeforces Round #344 (Div. 2) E. Product Sum 维护凸壳

    E. Product Sum 题目连接: http://www.codeforces.com/contest/631/problem/E Description Blake is the boss o ...

  6. Codeforces 660F Bear and Bowling 4 斜率优化 (看题解)

    Bear and Bowling 4 这也能斜率优化... max[ i ] = a[ i ] - a[ j ] - j * (sum[ i ] - sum[ j ])然后就能斜率优化啦, 我咋没想到 ...

  7. Codeforces 643C Levels and Regions 斜率优化dp

    Levels and Regions 把dp方程列出来, 把所有东西拆成前缀的形式, 就能看出可以斜率优化啦. #include<bits/stdc++.h> #define LL lon ...

  8. CodeForces - 660F:Bear and Bowling 4(DP+斜率优化)

    Limak is an old brown bear. He often goes bowling with his friends. Today he feels really good and t ...

  9. Codeforces 1067D - Computer Game(矩阵快速幂+斜率优化)

    Codeforces 题面传送门 & 洛谷题面传送门 好题. 首先显然我们如果在某一次游戏中升级,那么在接下来的游戏中我们一定会一直打 \(b_jp_j\) 最大的游戏 \(j\),因为这样得 ...

随机推荐

  1. Docker入门02——Dockerfile详解

    基本示例 FROM MAINTAINER LABEL RUN ADD COPY CMD ENTRYPOINT ENV EXPOSE VOLUME WORKDIR USER ARG 基本示例 # Thi ...

  2. split('\r\n')

    '\r'是回车,'\n'是换行,前者使光标到行首,后者使光标下移一格.通常用的Enter是两个加起来. 实际我的脚本读取FTP的列表,如果用的split("\r\n"),可以获得正 ...

  3. 前端 - Ajax (1)

    Ajax 主要作用 用于隐式提交,有别于input 提交时不会跳转/刷新页面. 前端: html 代码:(id) <p> <input id="user" typ ...

  4. 2018-2019-2 网络对抗技术 20165227 Exp3 免杀原理与实践

    2018-2019-2 网络对抗技术 20165227 Exp3 免杀原理与实践 **免杀** - 一般是对恶意软件做处理,让它不被杀毒软件所检测.也是渗透测试中需要使用到的技术. - 要做好免杀,就 ...

  5. NSOperation 代码,阐述NSOperation一般功能和重要功能

    // // ViewController.m // 05-NSOperation // // Created by jerry on 15/9/5. // Copyright (c) 2015年 je ...

  6. Django开发笔记三

    Django开发笔记一 Django开发笔记二 Django开发笔记三 Django开发笔记四 Django开发笔记五 Django开发笔记六 1.基于类的方式重写登录:views.py: from ...

  7. C#基础系列-反射

    1.反射的定义 反射(Reflection),是.Net中获取运行时类型信息的方式.程序集中有关程序及其类型的数据被称为元数据(metadata).程序在运行时,可以查看其它程序集或其本身的元数据.一 ...

  8. Zookeeper简介与集群搭建【转】

    Zookeeper简介 Zookeeper是一个高效的分布式协调服务,可以提供配置信息管理.命名.分布式同步.集群管理.数据库切换等服务.它不适合用来存储大量信息,可以用来存储一些配置.发布与订阅等少 ...

  9. java并发编程系列三、Lock和Condition

    有了synchronized为什么还要Lock? 因为Lock和synchronized比较有如下优点 1. 尝试非阻塞地获取锁 2. 获取锁的过程可以被中断 3. 超时获取锁 Lock的标准用法 p ...

  10. windows环境用python修改环境变量的注意点(含代码)

    1.部分环境变量字段需要保留原来的值,只是做添加,不可以替换 2.Path和PATH对于python来说是一样的,也就是说存在名为Path的环境变量时,添加PATH的环境变量,会覆盖原有的Path环境 ...