MasterThread:
  1. 持有一个BlockingQueue队列,用于并发接收存储MetaData对象;
  2. 使用Hash一致性算法ketama,来选择SlaveThread节点;
  3. 从BlockingQueue队列中,取出MetaData对象,分配给各SlaveThread节点;
  4. SlaveThread节点负责真正处理MetaData对象;
     
 SlaveThread:
  1. 持有一个BlockingQueue队列,用于存储MetaData对象;
  2. 负责真正处理MetaData对象;

Ketama:
 一致性Hash算法,是一种分布式算法,常用于负载均衡;

测试说明:
  1. 假设处理每个MetaData对象需要耗时0.5秒,需要处理500个MetaData对象;
  2. 若是串行处理,则需要0.5*500=250秒;
  3. 使用上图所示的master/slave算法,则可以5秒内完成;




MasterThread.java

核心程序介绍


SlaveThread.java

核心程序

测试

执行结果:
省略......
省略......



完整程序

HashAlgorithm.java
  1. package ll.concurrent.BlockingQueue.Ketama;
  2. import java.io.UnsupportedEncodingException;
  3. import java.security.MessageDigest;
  4. import java.security.NoSuchAlgorithmException;
  5. public enum HashAlgorithm {
  6. KETAMA_HASH;
  7. private static final String UTF_8 = "UTF-8";
  8. private static final String MD5 = "MD5";
  9. public long hash(byte[] digest, int nTime) {
  10. long rv = ((long) (digest[3 + nTime * 4] & 0xFF) << 24)
  11. | ((long) (digest[2 + nTime * 4] & 0xFF) << 16)
  12. | ((long) (digest[1 + nTime * 4] & 0xFF) << 8)
  13. | (digest[0 + nTime * 4] & 0xFF);
  14. return rv & 0xffffffffL; /* Truncate to 32-bits */
  15. }
  16. public byte[] computeMd5(String key) {
  17. MessageDigest md5;
  18. try {
  19. md5 = MessageDigest.getInstance(MD5);
  20. } catch (NoSuchAlgorithmException e) {
  21. throw new RuntimeException("MD5 not supported", e);
  22. }
  23. md5.reset();
  24. byte[] keyBytes = null;
  25. try {
  26. keyBytes = key.getBytes(UTF_8);
  27. } catch (UnsupportedEncodingException e) {
  28. throw new RuntimeException("Unknown string :" + key, e);
  29. }
  30. md5.update(keyBytes);
  31. return md5.digest();
  32. }
  33. }

KetamaNodeLocator.java
  1. package ll.concurrent.BlockingQueue.Ketama;
  2. import java.util.Collection;
  3. import java.util.TreeMap;
  4. /**
  5. * 一致性Hash算法:是一种分布式算法,常用于负载均衡;
  6. *
  7. * @param <T>
  8. */
  9. public final class KetamaNodeLocator<T> {
  10. private TreeMap<Long, T> ketamaNodes;
  11. private HashAlgorithm hashAlg;
  12. private int numReps = 160;
  13. public KetamaNodeLocator(Collection<T> nodes) {
  14. this(nodes, HashAlgorithm.KETAMA_HASH);
  15. }
  16. public KetamaNodeLocator(Collection<T> nodes, HashAlgorithm alg) {
  17. this(nodes, HashAlgorithm.KETAMA_HASH, 160);
  18. }
  19. public KetamaNodeLocator(Collection<T> nodes, HashAlgorithm alg,
  20. int nodeCopies) {
  21. hashAlg = alg;
  22. ketamaNodes = new TreeMap<Long, T>();
  23. numReps = nodeCopies;
  24. for (T node : nodes) {
  25. for (int i = 0; i < numReps / 4; i++) {
  26. byte[] digest = hashAlg.computeMd5(node.toString() + i);
  27. for (int h = 0; h < 4; h++) {
  28. long m = hashAlg.hash(digest, h);
  29. ketamaNodes.put(m, node);
  30. }
  31. }
  32. }
  33. }
  34. public T getNode(final String k) {
  35. byte[] digest = hashAlg.computeMd5(k);
  36. T rv = getNodeForKey(hashAlg.hash(digest, 0));
  37. return rv;
  38. }
  39. T getNodeForKey(long hash) {
  40. if (ketamaNodes.isEmpty()) {
  41. return null;
  42. }
  43. if (!ketamaNodes.containsKey(hash)) {
  44. Object ceilValue = ((TreeMap<Long, T>) ketamaNodes)
  45. .ceilingKey(hash);
  46. if (ceilValue != null) {
  47. try {
  48. hash = Long.valueOf(ceilValue.toString());
  49. } catch (NumberFormatException e) {
  50. e.printStackTrace();
  51. hash = 0;
  52. }
  53. }
  54. if (ceilValue == null || hash == 0) {
  55. hash = ketamaNodes.firstKey();
  56. }
  57. }
  58. return ketamaNodes.get(hash);
  59. }
  60. }

MasterThread.java
  1. package ll.concurrent.BlockingQueue;
  2. import java.util.HashMap;
  3. import java.util.Map;
  4. import java.util.concurrent.BlockingQueue;
  5. import java.util.concurrent.ExecutorService;
  6. import java.util.concurrent.Executors;
  7. import java.util.concurrent.LinkedBlockingQueue;
  8. import ll.concurrent.BlockingQueue.Ketama.KetamaNodeLocator;
  9. /**
  10. * <pre>
  11. * MasterThread:
  12. * 1. 持有一个BlockingQueue队列,用于并发接收存储MetaData对象;
  13. * 2. 使用Hash一致性算法ketama来选择SlaveThread节点;
  14. * 3. 从BlockingQueue队列中,取出MetaData对象,分配给SlaveThread节点;
  15. * 4. SlaveThread节点负责真正处理MetaData对象;
  16. *
  17. * SlaveThread:
  18. * 1. 持有一个BlockingQueue队列,用于存储MetaData对象;
  19. * 2. 负责真正处理MetaData对象;
  20. * </pre>
  21. */
  22. public class MasterThread {
  23. private static int SLAVE_ENGINE_NUMBER_MAX = 100;
  24. private static int _BLOCKSIZE = 5000;
  25. private static MasterThread masterThread;
  26. private BlockingQueue<MetaData> metaDataQueue;
  27. private SlaveEngineThread slaveEngineThread;
  28. public static synchronized MasterThread getInstance() {
  29. if (masterThread == null) {
  30. masterThread = new MasterThread();
  31. }
  32. return masterThread;
  33. }
  34. private MasterThread() {
  35. metaDataQueue = new LinkedBlockingQueue<MetaData>(_BLOCKSIZE);
  36. startSlaveThreadEngine();
  37. }
  38. private void startSlaveThreadEngine() {
  39. slaveEngineThread = new SlaveEngineThread(SLAVE_ENGINE_NUMBER_MAX);
  40. slaveEngineThread.start();
  41. }
  42. public synchronized void put(MetaData object) {
  43. if (object == null)
  44. return;
  45. if (!metaDataQueue.offer(object)) {
  46. System.err.println("BlockingQueue is up to max size:"
  47. + metaDataQueue.size());
  48. }
  49. }
  50. private class SlaveEngineThread extends Thread {
  51. private ExecutorService executorService;
  52. private Map<Integer, SlaveThread> slaveThreadMap;
  53. //本示例采用一致性Hash算法,选择SlaveThread
  54. private KetamaNodeLocator<Integer> nodeLocator;
  55. public SlaveEngineThread(final int nThreads) {
  56. slaveThreadMap = new HashMap<Integer, SlaveThread>();
  57. // 创建线程池,并发执行SlaveThread
  58. executorService = Executors.newFixedThreadPool(nThreads);
  59. for (int i = 0; i < nThreads; i++) {
  60. SlaveThread command = new SlaveThread(i);
  61. executorService.execute(command);
  62. slaveThreadMap.put(i, command);
  63. }
  64. nodeLocator = new KetamaNodeLocator<Integer>(
  65. slaveThreadMap.keySet());
  66. }
  67. @Override
  68. public void run() {
  69. while (true) {
  70. MetaData metaData = null;
  71. try {
  72. // 堵塞获取
  73. metaData = metaDataQueue.take();
  74. // 通过hash算法获取slaveThread编号
  75. Integer nodeNumber = nodeLocator.getNode(metaData.getId());
  76. SlaveThread slaveThread = slaveThreadMap.get(nodeNumber);
  77. if (slaveThread != null) {
  78. // 将MetaData存入SlaveThread处理
  79. slaveThread.put(metaData);
  80. }
  81. } catch (InterruptedException e) {
  82. executorService.shutdown();
  83. System.err.println("SlaveEngineThread is Interrupted ... ");
  84. break;
  85. } catch (Exception e) {
  86. System.err.println("failed to handle meta data" + e);
  87. }
  88. }
  89. System.err.println("Master Thread exit...");
  90. }
  91. }
  92. public void exit() {
  93. stopSlaveEngineThread();
  94. }
  95. private void stopSlaveEngineThread() {
  96. slaveEngineThread.interrupt();
  97. }
  98. }

SlaveThread.java
  1. package ll.concurrent.BlockingQueue;
  2. import java.text.SimpleDateFormat;
  3. import java.util.concurrent.BlockingQueue;
  4. import java.util.concurrent.LinkedBlockingQueue;
  5. public class SlaveThread implements Runnable {
  6. private BlockingQueue<MetaData> msgQueue = new LinkedBlockingQueue<MetaData>(
  7. 200);
  8. private int slaveThreadID;
  9. public SlaveThread() {
  10. }
  11. public SlaveThread(int slaveThreadID) {
  12. super();
  13. this.slaveThreadID = slaveThreadID;
  14. }
  15. public void run() {
  16. while (true) {
  17. MetaData metaData = null;
  18. try {
  19. // 堵塞获取
  20. metaData = msgQueue.take();
  21. handleMetaData(metaData);
  22. } catch (InterruptedException e) {
  23. System.err.println("SlaveThread[" + this.slaveThreadID + "] is Interrupted...");
  24. break;
  25. } catch (Exception e) {
  26. System.err.println("failed to handle meta data" + e);
  27. }
  28. }
  29. System.err.println("SlaveThread[" + this.slaveThreadID + "] exit...");
  30. }
  31. public void put(MetaData object) {
  32. if (object == null)
  33. return;
  34. if (!msgQueue.offer(object)) {
  35. System.err.println("SlaveThread BlockingQueue up to max size");
  36. }
  37. }
  38. private void handleMetaData(MetaData metaData) throws Exception {
  39. // 模拟处理,耗时500毫秒
  40. Thread.sleep(500);
  41. System.out.println("SlaveThread["+ this.slaveThreadID + "] "
  42. + metaData.toString()
  43. + new SimpleDateFormat("HH:mm:ss").format(System
  44. .currentTimeMillis()));
  45. }
  46. }

MetaData.java
  1. package ll.concurrent.BlockingQueue;
  2. public class MetaData {
  3. private String id;
  4. private String desc;
  5. public MetaData() {
  6. super();
  7. }
  8. public MetaData(String id) {
  9. super();
  10. this.id = id;
  11. }
  12. public MetaData(String id, String desc) {
  13. super();
  14. this.id = id;
  15. this.desc = desc;
  16. }
  17. public String getId() {
  18. return id;
  19. }
  20. public void setId(String id) {
  21. this.id = id;
  22. }
  23. public String getDesc() {
  24. return desc;
  25. }
  26. public void setDesc(String desc) {
  27. this.desc = desc;
  28. }
  29. @Override
  30. public String toString() {
  31. return "MetaData [id=" + id + ", desc=" + desc + "]";
  32. }
  33. }

TestCase.java
  1. package ll.concurrent.BlockingQueue;
  2. import java.text.SimpleDateFormat;
  3. public class TestCase {
  4. public static void main(String[] args) throws InterruptedException {
  5. MasterThread masterThread = MasterThread.getInstance();
  6. System.out.println("Start time:"
  7. + new SimpleDateFormat("HH:mm:ss").format(System
  8. .currentTimeMillis()));
  9. /**
  10. * 每个MetaData都需要0.5S的处理时间,如果串行执行,则需要500*0.5=250;
  11. * 现采用并行处理,只需要很短的时间即可执行完;
  12. */
  13. for (int i = 0; i < 500; i++) {
  14. MetaData metaData = new MetaData(i + "");
  15. masterThread.put(metaData);
  16. }
  17. }
  18. }



参考:
《Java编发编程实战》:7.2.1 日志服务章节: <N生产者,1个消费者> 

【并发编程】使用BlockingQueue实现<多生产者,多消费者>的更多相关文章

  1. Java并发编程虚假唤醒问题(生产者和消费者关系)

    何为虚假唤醒: 当一个条件满足时,很多线程都被唤醒了,但是只有其中部分是有用的唤醒,其它的唤醒都是无用功:比如买货:如果商品本来没有货物,突然进了一件商品,这是所有的线程都被唤醒了,但是只能一个人买, ...

  2. 转: 【Java并发编程】之十三:生产者—消费者模型(含代码)

    转载请注明出处:http://blog.csdn.net/ns_code/article/details/17249321 生产者消费者问题是线程模型中的经典问题:生产者和消费者在同一时间段内共用同一 ...

  3. 【Java并发编程】之十三:生产者—消费者模型

    生产者消费者问题是线程模型中的经典问题:生产者和消费者在同一时间段内共用同一存储空间,生产者向空间里生产数据,而消费者取走数据. ​ 这里实现如下情况的生产--消费模型: ​ 生产者不断交替地生产两组 ...

  4. python并发编程-进程间通信-Queue队列使用-生产者消费者模型-线程理论-创建及对象属性方法-线程互斥锁-守护线程-02

    目录 进程补充 进程通信前言 Queue队列的基本使用 通过Queue队列实现进程间通信(IPC机制) 生产者消费者模型 以做包子买包子为例实现当包子卖完了停止消费行为 线程 什么是线程 为什么要有线 ...

  5. 并发编程 06—— CompletionService :Executor 和 BlockingQueue

    Java并发编程实践 目录 并发编程 01—— ThreadLocal 并发编程 02—— ConcurrentHashMap 并发编程 03—— 阻塞队列和生产者-消费者模式 并发编程 04—— 闭 ...

  6. 并发编程 01—— ThreadLocal

    Java并发编程实践 目录 并发编程 01—— ThreadLocal 并发编程 02—— ConcurrentHashMap 并发编程 03—— 阻塞队列和生产者-消费者模式 并发编程 04—— 闭 ...

  7. 并发编程 20—— AbstractQueuedSynchronizer 深入分析

    Java并发编程实践 目录 并发编程 01—— ThreadLocal 并发编程 02—— ConcurrentHashMap 并发编程 03—— 阻塞队列和生产者-消费者模式 并发编程 04—— 闭 ...

  8. 并发编程 02—— ConcurrentHashMap

    Java并发编程实践 目录 并发编程 01—— ThreadLocal 并发编程 02—— ConcurrentHashMap 并发编程 03—— 阻塞队列和生产者-消费者模式 并发编程 04—— 闭 ...

  9. 并发编程 04——闭锁CountDownLatch 与 栅栏CyclicBarrier

    Java并发编程实践 目录 并发编程 01—— ThreadLocal 并发编程 02—— ConcurrentHashMap 并发编程 03—— 阻塞队列和生产者-消费者模式 并发编程 04—— 闭 ...

  10. 并发编程 05—— Callable和Future

    Java并发编程实践 目录 并发编程 01—— ThreadLocal 并发编程 02—— ConcurrentHashMap 并发编程 03—— 阻塞队列和生产者-消费者模式 并发编程 04—— 闭 ...

随机推荐

  1. Templates中的macro和include标签

    1.macro标签 1.作用:相当于在模板中声名函数 2.使用方法: 语法:{% macro 名称(参数列表) %} xxx {% endmacro %} 创建 macro.html 模板文件   - ...

  2. XML中DTD,XSD的区别与应用

    XML我们并不陌生,在企业级应用中有很广的用途.具体就不再说,下面介绍一下DTD,XSD的区别并以XSD为例看spring中定义与使用.1.DTD(Documnet Type Definition)D ...

  3. Gym - 101981M:(南京) Mediocre String Problem(回文树+exkmp)

    #include<bits/stdc++.h> #define ll long long #define rep(i,a,b) for(int i=a;i<=b;i++) using ...

  4. Codeforces Round #544 (Div. 3) (补)

    D:没有注意到a==0&&b==0的情况,把自己卡崩了.对于数学公式推导一定要注意关于0的特殊情况,不可以少 #include <iostream> #include &l ...

  5. xdoj-1243 (费马平方和问题)

    1243: CKJ老师爱数学 时间限制: 1 Sec  内存限制: 128 MB提交: 56  解决: 13[提交][状态][讨论版] 题目描述 众所周知,CKJ老师非常热爱数学,他对于方程组的有自己 ...

  6. 斐波那契 - pythoon实现

    def fn_1(n): if n == 0 : return n elif n == 1 : return n else: a = [0,1] for i in range(2,n): a.appe ...

  7. python----函数与函数式编程

    一. 函数与函数式编程 1. 面向对象编程 (类)class 2.面向过程编程 (过程) def 3.函数式编程 (函数) def (1)  函数的特点:          代码重用:         ...

  8. mac sz rz file tras

    安装Zmodem的实现 brew install lrzsz 下载 iterm2-send-zmodem.sh 和 iterm2-recv-zmodem.sh 到路径/usr/local/bin/   ...

  9. redis使用问题总结

    1.redis使用过多内存导致其他进程无法正常运行情况:      解决方案:限制redis的最大使用内存,修改redis.conf中的maxmemory(一般不要超过空闲内存的3/5,如果不设置ma ...

  10. Explicit

    Prefixing the explicit keyword to the constructor prevents the compiler from using that constructor ...