BZOJ1494 [NOI2007]生成树计数
题意
| F.A.Qs | Home | Discuss | ProblemSet | Status | Ranklist | Contest | 入门OJ | ModifyUser autoint | Logout | 捐赠本站 |
|---|
Problem 1494. -- [NOI2007]生成树计数
1494: [NOI2007]生成树计数
Time Limit: 5 Sec Memory Limit: 64 MB
Submit: 1024 Solved: 592
[Submit][Status][Discuss]
Description
.png)

.png)
.png)
.png)

.png)
.png)
Input
包含两个整数k,n,由一个空格分隔。k表示要将所有距离不超过k(含k)的结点连接起来,n表示有n个结点。
Output
输出一个整数,表示生成树的个数。由于答案可能比较大,所以你 只要输出答案除65521 的余数即可。
Sample Input
Sample Output
HINT

Source
[Submit][Status][Discuss]
HOME
Back
中文
فارسی
English
ไทย
分析
参照xyz32768的题解。
定义状态: \(f[i][S]\)表示\(i\)个点的图,编号差\(≤k\)的点对之间有连边,现选出一些边,连通第\(1\)个点到第\(i−k\)个点,第\(i−k+1\)个点到第\(i\)个点的连通性为\(S\),第\(i−k+1\)个点到第\(i\)个点至少存在一点与前\(i−1\)个点连通,且选出的边无环的方案数。
注意这里的\(S\)压缩连通性使用的是最小表示法: 对连通块进行标号,从\(1\)到连通块个数,首次出现位置越靠前的连通块编号越小。
会发现有效\(S\)的个数是贝尔数,即第二类斯特林数的前缀和。 \(k=5\)时状态数只有\(52\) 。
如何求\(f[i+1][T]\)从\(f[i][S]\)的转移系数呢?
我们可以对于一个\(S\),\(2^k\)枚举第\(i−k+1\)个点到第\(i\)个点是否与\(i+1\)连边,大力计算即可。
但要注意:
- 如果第\(i−k+1\)个点在第\(i−k+1\)到第\(i\)个点中单独属于一个连通块,那么\(i−k+1\)和\(i+1\)间必须连边,否则不能保证「连通前\(i−k+1\)个点」。
- 不能由\(i\)连向第\(i−k+1\)个点到第\(i\)个点中的同一个连通块,否则会形成环。
发现转移系数不变且为一阶,因此直接上矩阵快速幂。
代码
参照Icefox_zhx的代码。dfs写有许多好处。
我们可以先用一个DFS预处理出所有可能出现的连通性的状态。然后再枚举连通性状态S以及下一个点和S里的K个点中的哪些点连边,再判断从连通性状态S转移出来的新状态S′是否是合法的,若合法,在邻接矩阵里,标记从S到S′的方案数加1.
#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') w=-1;ch=getchar();}
while(isdigit(ch)) data=data*10+ch-'0',ch=getchar();
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll;
using namespace std;
co int M=7,N=60,mod=65521;
int m;ll n;
int temp[M],sta[N][M],tot,ini[N];
void init_sta(int id){ //预处理所有状态的初始种类数
static int cnt[M];
memset(cnt,0,sizeof cnt);
for(int i=1;i<=m;++i) ++cnt[sta[id][i]];
ini[id]=1;
for(int i=1;cnt[i];++i)if(cnt[i]>2) ini[id]*=pow(cnt[i],cnt[i]-2);
//n个点的完全图的生成树个数为n^(n-2)个
}
void dfs_sta(int i,int x){ //前i-1个点分成了x个连通块
if(i==m+1) return memcpy(sta[++tot],temp,sizeof temp),init_sta(tot);
for(int j=1;j<=x+1;++j) temp[i]=j,dfs_sta(i+1,max(j,x));
}
struct matrix{
int a[N][N];
il int*operator[](int x){return a[x];}
il co int*operator[](int x)co{return a[x];}
matrix operator*(co matrix&b)co{
matrix c;
memset(c.a,0,sizeof c.a);
for(int i=1;i<=tot;++i)
for(int j=1;j<=tot;++j)
for(int k=1;k<=tot;++k)
c[i][j]=(c[i][j]+(ll)a[i][k]*b[k][j])%mod;
return c;
}
matrix operator^(ll k){
matrix x=*this,re;
memset(re.a,0,sizeof re.a);
for(int i=1;i<=tot;++i) re[i][i]=1;
for(;k;k>>=1,x=x*x)
if(k&1) re=re*x;
return re;
}
}trans;
bool f[M],edge[M]; //f[i]:i连通块是否已连过,edge[i]:i位置是否连边了
bool issame(int a[],int b[]){
for(int i=1;i<=m;++i)
if(a[i]!=b[i]) return 0;
return 1;
}
void get_tra(int id){ //求sta[id]此时转移到的状态a
static int a[M];
memcpy(a,sta[id],sizeof a);
for(int i=1;i<=m;++i)if(edge[i]){
if(a[m+1]==0) a[m+1]=a[i];
else for(int x=a[i],j=1;j<=m;++j)if(a[j]==x) a[j]=a[m+1];
}
for(int i=1;i<=m;++i) a[i]=a[i+1]; //把状态往前挪一个
static int num[M],cnt;
memset(num,0,sizeof num),cnt=0;
for(int i=1;i<=m;++i){ //重新标号,使得满足最小表示法
if(!num[a[i]]) num[a[i]]=++cnt;
a[i]=num[a[i]];
}
for(int i=1;i<=tot;++i)if(issame(a,sta[i]))
return ++trans[id][i],void();
}
void dfs_tra(int id,int i){
if(i==m+1) return get_tra(id);
dfs_tra(id,i+1);
if(!f[sta[id][i]]){
f[sta[id][i]]=1,edge[i]=1;
dfs_tra(id,i+1);
f[sta[id][i]]=0,edge[i]=0;
}
}
int main(){
// freopen(".in","r",stdin),freopen(".out","w",stdout);
read(m),read(n);
dfs_sta(1,0); //预处理出k个点的所有连接状态,用最小表示法表示,以及每种状态的初始种类数
for(int i=1;i<=tot;++i){
memset(f,0,sizeof f);
memset(edge,0,sizeof edge);
bool flag=1;
for(int j=2;j<=m;++j)
if(sta[i][j]==1) {flag=0;break;}
if(flag) f[1]=1,edge[1]=1,dfs_tra(i,2); //1必须连这个了。
else dfs_tra(i,1);
}
trans=trans^(n-m);
int ans=0;
for(int i=1;i<=tot;++i) ans=(ans+(ll)trans[i][1]*ini[i])%mod;
printf("%d\n",ans);
return 0;
}
BZOJ1494 [NOI2007]生成树计数的更多相关文章
- [BZOJ1494][NOI2007]生成树计数 状压dp 并查集
1494: [NOI2007]生成树计数 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 793 Solved: 451[Submit][Status][ ...
- [NOI2007]生成树计数环形版
NOI2007这道题人类进化更完全之后出现了新的做法 毕姥爷题解: 于是毕姥爷出了一道环形版的这题(test0814),让我们写这个做法 环形的情况下,k=5的时候是162阶递推. 求这个递推可以用B ...
- NOI2007 生成树计数
题目 首先我要吐槽,这题目就是坑,给那么多无用的信息,我还以为要根据提示才能做出来呢! 算法1 暴力,傻傻地跟着提示,纯暴力\(40\)分,高斯消元\(60\)分. 算法2 DP!一个显然的东西是,这 ...
- [BZOJ1494]生成树计数
[BZOJ1494] [NOI2007]生成树计数 Description 最近,小栋在无向连通图的生成树个数计算方面有了惊人的进展,他发现:·n个结点的环的生成树个数为n.·n个结点的完全图的生成树 ...
- 【BZOJ1494】【NOI2007】生成树计数(动态规划,矩阵快速幂)
[BZOJ1494][NOI2007]生成树计数(动态规划,矩阵快速幂) 题面 Description 最近,小栋在无向连通图的生成树个数计算方面有了惊人的进展,他发现: ·n个结点的环的生成树个数为 ...
- 【BZOJ1002】【FJOI2007】轮状病毒(生成树计数)
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1766 Solved: 946[Submit][Status ...
- SPOJ 104 HIGH - Highways 生成树计数
题目链接:https://vjudge.net/problem/SPOJ-HIGH 解法: 生成树计数 1.构造 基尔霍夫矩阵(又叫拉普拉斯矩阵) n阶矩阵 若u.v之间有边相连 C[u][v]=C[ ...
- Luogu P5296 [北京省选集训2019]生成树计数
Luogu P5296 [北京省选集训2019]生成树计数 题目链接 题目大意:给定每条边的边权.一颗生成树的权值为边权和的\(k\)次方.求出所有生成树的权值和. 我们列出答案的式子: 设\(E\) ...
- Loj 2320.「清华集训 2017」生成树计数
Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...
随机推荐
- 【原创】<Debug> not positioned on a valid record
[Problem] QSqlQuery::value: not positioned on a valid record QSqlQuery :: value:未定位在有效记录上 [Solution] ...
- .net core json配置相关用法
在.net core中,配置文件差不多都是json文件.我们在开发程序的时候,可以使用系统默认的appsettings.json,可以自定义json配置文件.当json配置文件里面的参数改变时,程序也 ...
- Spring Boot学习笔记----POI(Excel导入导出)
业务:动态生成模板导出Excel,用户修改完再导入Excel. Spring boot + bootstrap + poi 1.添加Dependence <dependency> < ...
- centos7部署kubernetes
参考:https://www.cnblogs.com/zhenyuyaodidiao/p/6500830.html 1.环境介绍及准备: 1.1 物理机操作系统 物理机操作系统采用Centos7.3 ...
- DevExpress WinForms使用教程:WinForms Fluent Design和Acrylic Effects
在先前的版本发布中,宣布支持Fluent Design Form和Acrylic effects——旨在复制Microsoft下一代UI metaphor的新功能.本文主要介绍如何实现此功能,并明确说 ...
- CSS学习笔记-01-2D转换模块
首先,mark 一下 css3 新增 的 2D 转换之 W3school 的链接: http://www.w3school.com.cn/css3/css3_2dtransform.asp 转换是使 ...
- 究竟 javascript 错误处理有哪些类型?
有时候,在自己封装的工具函数中,不传参或传入了错误类型的参数,也要适当的抛出一些错误以示警告:使用框架不正常情况下也会抛出错误,如果对错误一无所知,便无从下手调试.综合上述,了解错误的处理机制是多么必 ...
- Oracle 12c中新建pdb用户登录问题分析
Oracle 12c新建用户登录问题分析1 用sys用户新建用户,提示公用用户名或角色名无效.原因:Oracle 12c中,在容器中建用户(或者应该称为使用者),须在用户名前加c##.默认登录连接的就 ...
- mysql查询锁表语句
processlist命令的输出结果显示了有哪些线程在运行,可以帮助识别出有问题的查询语句,两种方式使用这个命令. 1. 进入mysql/bin目录下输入mysqladmin process ...
- python flask实现小项目方法
本文目的是为了完成一个项目用到的flask基本知识,例子会逐渐加深.最好对着源码,一步一步走. 下载源码,运行 pip install -r requirements.txt 建立环境 python ...