D. Concatenated Multiples

You are given an array aa, consisting of nn positive integers.

Let's call a concatenation of numbers xx and yy the number that is obtained by writing down numbers xx and yy one right after another without changing the order. For example, a concatenation of numbers 1212 and 34563456 is a number 123456123456.

Count the number of ordered pairs of positions (i,j)(i,j) (i≠ji≠j) in array aa such that the concatenation of aiai and ajaj is divisible by kk.

Input

The first line contains two integers nn and kk (1≤n≤2⋅1051≤n≤2⋅105, 2≤k≤1092≤k≤109).

The second line contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤1091≤ai≤109).

Output

Print a single integer — the number of ordered pairs of positions (i,j)(i,j) (i≠ji≠j) in array aa such that the concatenation of aiai and ajaj is divisible by kk.

Examples
input

Copy
6 11
45 1 10 12 11 7
output

Copy
7
input

Copy
4 2
2 78 4 10
output

Copy
12
input

Copy
5 2
3 7 19 3 3
output

Copy
0
Note

In the first example pairs (1,2)(1,2), (1,3)(1,3), (2,3)(2,3), (3,1)(3,1), (3,4)(3,4), (4,2)(4,2), (4,3)(4,3) suffice. They produce numbers 451451, 45104510, 110110, 10451045, 10121012, 121121, 12101210, respectively, each of them is divisible by 1111.

In the second example all n(n−1)n(n−1) pairs suffice.

In the third example no pair is sufficient.

 题意:给出n个数,再给一个mod,然后现在有一种方法说是,可以把任意两个数连接起来,问你连接起来的对数取余mod等于0的有多少个

思路:乍一看没什么思路,暴力肯定不行,10^5的数n^2就炸了,我们就要想怎么去优化他,我们可以考虑预处理然后遍历一遍

我们先给出一个例子  给出n个数和一个mod,求多少对加起来mod等于0?

这个n^2也不行,但是我们想一下如果我取余一个数=x 的话   我要什么情况才能让这个数加一个数%mod等于0

我们只有(x+y)%mod == 0     那在我们知道x的情况,我们只要找 mod-y的余数个数有多少即可

同理我们可以推理到这个题:因为是连接 12  34     我们相当于看成是  1200+34即可,就成功转移到了以上问题

因为连接不同的数的时候后面紧跟的0的个数不同,我们只要存下一个0到十个0所有的都用map存下即可

然后特别的,最后判断下自身加自身会不会也可以被mod为0,如果是的话-1

map<ll,ll> mp[11]

mp[j][x]    代表的是  j个0余数为x的个数

#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<string>
#include<iostream>
#include<queue>
#include<algorithm>
#define mod 1000000007
using namespace std;
typedef long long ll;
int n,m;
int main()
{
int a[];
map<ll,ll> mp[];
scanf("%d%d",&n,&m);
for(int i=;i<n;i++)
{
scanf("%d",&a[i]);
ll x=a[i];
for(int j=;j<=;j++)//预处理存余数个数
{
x*=;
x%=m;
mp[j][x]++;
}
}
ll sum=;
for(int i=;i<n;i++)
{
int t=a[i]%m;
int len=log10(a[i])+;
sum+=mp[len][(m-t)%m]; //加上与当前数连接余数为0的个数
ll x=;
for(int j=;j<=len;j++) x=(x*)%m; //除去自身
if(((a[i]*x)%m+a[i]%m)%m==) sum--;
}
printf("%I64d",sum);
}

Codeforces Round #506 (Div. 3) D. Concatenated Multiples的更多相关文章

  1. Codeforces Round #506 (Div. 3) - D. Concatenated Multiples(思维拼接求是否为k的倍数)

    题意 给你N个数字和一个K,问一共有几种拼接数字的方式使得到的数字是K的倍数,拼接:“234”和“123”拼接得到“234123” 分析: N <= 2e5,简单的暴力O(N^2)枚举肯定超时 ...

  2. Codeforces Round #506 (Div. 3) 题解

    Codeforces Round #506 (Div. 3) 题目总链接:https://codeforces.com/contest/1029 A. Many Equal Substrings 题意 ...

  3. Codeforces Round #506 (Div. 3) D-F

    Codeforces Round #506 (Div. 3) (中等难度) 自己的做题速度大概只尝试了D题,不过TLE D. Concatenated Multiples 题意 数组a[],长度n,给 ...

  4. Codeforces Round #506 (Div. 3) E

    Codeforces Round #506 (Div. 3) E dfs+贪心 #include<bits/stdc++.h> using namespace std; typedef l ...

  5. Codeforces Round #506 (Div. 3) 1029 D. Concatenated Multiples

    题意: 给定n个数字,和一个模数k,从中选出两个数,直接拼接,问拼接成的数字是k的倍数的组合有多少个. 思路: 对于a,b两个数,假定len = length of (b),那么a,b满足条件就是a ...

  6. Codeforces Round #506 (Div. 3)

    题解: div3水的没有什么意思 abc就不说了 d题比较显然的就是用hash 但是不能直接搞 所以我们要枚举他后面那个数的位数 然后用map判断就可以了 刚开始没搞清楚数据范围写了快速乘竟然被hac ...

  7. Codeforces Round #506 (Div. 3) C. Maximal Intersection

    C. Maximal Intersection time limit per test 3 seconds memory limit per test 256 megabytes input stan ...

  8. 【Codeforces Round #506 (Div. 3) 】

    A:https://www.cnblogs.com/myx12345/p/9844334.html B:https://www.cnblogs.com/myx12345/p/9844368.html ...

  9. Codeforces Round #506 (Div. 3)B.Creating the Contest(dp)

    B. Creating the Contest time limit per test 1 second memory limit per test 256 megabytes input stand ...

随机推荐

  1. Vue音乐项目笔记(二)

    1. Vuex https://blog.csdn.net/weixin_40814356/article/details/80347366 编写: 然后,在main.js中引入 在组件中改变stat ...

  2. 背包DP 存在异或条件的状态转移问题

    题目链接 分析:有大佬说可以用线性基写,可惜我不会,这是用DP写的 题目明确说明可到达的位置只与能值有关,和下标无关,我们就可以排个序,这样每个数可以转移的区间就是它的所有后缀 我们可以用dp[i][ ...

  3. c++ shared_ptr的使用

    shared_ptr.是c++为了提高指针安全性而添加的智能指针,方便了内存管理.功能非常强大,非常强大,非常强大(不单单是shared_ptr,配合week_ptr以及enable_share_fr ...

  4. CSS text-decoration 属性

    定义和用法 text-decoration 属性规定添加到文本的修饰. 注释:修饰的颜色由 "color" 属性设置. 说明 这个属性允许对文本设置某种效果,如加下划线.如果后代元 ...

  5. vue组件生命周期详解

    Vue所有的生命周期钩子自动绑定在this上下文到实例中,因此你可以访问数据,对属性和方法进行运算.这意味着你不能使用箭头函数来定义一个生命周期方法.这是因为箭头函数绑定了父上下文,因此this与你期 ...

  6. 《高性能SQL调优精要与案例解析》一书谈主流关系库SQL调优(SQL TUNING或SQL优化)核心机制之——索引(index)

    继<高性能SQL调优精要与案例解析>一书谈SQL调优(SQL TUNING或SQL优化),我们今天就谈谈各主流关系库中,占据SQL调优技术和工作半壁江山的.最重要的核心机制之一——索引(i ...

  7. MAC常用软件工具(随某人个人版)

    1.mac命令行工具(自带升级版) https://ohmyz.sh/ 连接远程服务器地址: 直接输入 ssh -A -p 22 root@IP 如:ssh -A -p 22 root@www.bai ...

  8. Qt 之 去除窗口部件被选中后的焦点虚线框

    转自: https://blog.csdn.net/goforwardtostep/article/details/53420529 https://blog.csdn.net/caoshangpa/ ...

  9. react router @4 和 vue路由 详解(二)react-router @4用法

    完整版:https://www.cnblogs.com/yangyangxxb/p/10066650.html 2.react-router @4用法 a.大概目录      不需要像vue那样麻烦的 ...

  10. learning at command AT+CSQ

    AT command AT+CSQ [Purpose]        Learning how to get mobile module single quality report   [Eeviro ...