Problem Description

Given two positive integers G and L, could you tell me how many solutions of (x, y, z) there are, satisfying that gcd(x, y, z) = G and lcm(x, y, z) = L? 
Note, gcd(x, y, z) means the greatest common divisor of x, y and z, while lcm(x, y, z) means the least common multiple of x, y and z. 
Note 2, (1, 2, 3) and (1, 3, 2) are two different solutions.

Input

First line comes an integer T (T <= 12), telling the number of test cases. The next T lines, each contains two positive 32-bit signed integers, G and L. It’s guaranteed that each answer will fit in a 32-bit signed integer.

Output

For each test case, print one line with the number of solutions satisfying the conditions above.

Sample Input

6
  

Sample Output

72
0 大概题意: 给出T组数据每组数据有两个数分别为x,y,z的最大公约数和
最小公倍数,让我们求出x,y,z总共有多少组不同组合方式; 具体思路
        考虑先分解最小公倍数。合数分解后,再分解最大公约数,可知,如果最大公约数中有最小公倍数中没有的质因数因子的话,那么答案肯定为0
        然后考虑每一个因子pi有设合数分解最小公倍数的个数为bi合数分解最大公约数的个数为bi
       
  下面有两种考虑方法
 
   1.排列组合
 
         易得三个数中的对于pi的情况必须有一个个数是bi,另一个是ai,然后就可以先选出两个位置一个bi一个ai然后最后一个位置上的个数一定介于ai和bi之间即(bi-ai-1)种情况。
        所以最后的公式为ans *=  A(3,2)*(bi-ai-1) = 6*(bi-ai-1) ;
 
       注意
 
         如果先筛素数的时候筛到1^6 然后如果L除以最后一个素数的时候不等于1,那么说明它(L的最后一个因子)一定是大于10^6的一个素数,因为10^12 = 10^6^2 > x^2>y;如果y存在
       一个非素数的因子k的话,有k*t = y 且k>x,则t<x则t已经被筛掉了。    所以剩下的因子一定是素因子。一开始没有考虑这种特殊情况wa掉了。还要注意只有当(bi-ai-1) 有意义的时候才可以计算,因为如果bi==ai的时候可以发现正确结果是对于这一位应该是只用一种情况,就是三个数都相等,所以要特判一下。
 
 
    2. 容斥定理
 
        同样是考虑每个因子,有所有的情况是每个位置都可以取(bi-ai+1)种情况即(bi-ai+1)^3,要减去没有bi个因子的情况和没有ai个因子的情况即2*(bi-ai)^3
       然后发现减多了,要加上同时没有因子ai和bi的情况即(bi-ai-1)^3 这里同样要注意上面的注意。
 
操作代码如下
 
#include<iostream>
using namespace std;
#define N 100100
#define ll long long
ll d[N][],e[N][],cntn,cntm;
void devide(int n,int m)
{
cntn=cntm=;
for(int i=;i*i<=n;i++)
{
if(n%i==)
{
int num=;
while(n%i==)
{
num++;
n/=i;
}
d[++cntn][]=i,d[cntn][]=num;
}
}
for(int i=;i*i<=m;i++)
{
if(m%i==)
{
int num=;
while(m%i==)
{
num++;
m/=i;
}
e[++cntm][]=i,e[cntm][]=num;
}
}
if(n>)d[++cntn][]=n,d[cntn][]=;
if(m>)e[++cntm][]=m,e[cntm][]=;
}
ll solve(int n,int m)
{
if(m%n!=)
return ;
devide(n,m);
ll ans=,v;
for(int i=;i<=cntm;i++)
{
int flag=;
for(int j=;j<=cntn;j++)
if(e[i][]==d[j][])
{
flag=;
v=j;
break;
}
if(!flag)
ans=ans**e[i][];
else
{
ll t=e[i][]-d[v][];
if(t==)continue;
ans=ans**t;
}
}
return ans;
}
int main()
{
int t;
int n,m;
cin>>t;
while(t--)
{
cin>>n>>m;
ll ans=solve(n,m);
cout<<ans<<endl;
}
return ;
}

实践是检验真理的唯一标准;

GCD and LCM HDU - 4497(质因数分解)的更多相关文章

  1. GCD and LCM HDU 4497 数论

    GCD and LCM HDU 4497 数论 题意 给你三个数x,y,z的最大公约数G和最小公倍数L,问你三个数字一共有几种可能.注意123和321算两种情况. 解题思路 L代表LCM,G代表GCD ...

  2. GCD and LCM HDU - 4497

    题目链接:https://vjudge.net/problem/HDU-4497 题意:求有多少组(x,y,z)满足gcd(x,y,z)=a,lcm(x,y,z)=b. 思路:对于x,y,z都可以写成 ...

  3. HDU 1045(质因数分解)

    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u   Description Tomor ...

  4. HDU 1695 GCD 欧拉函数+容斥原理+质因数分解

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a ...

  5. G - GCD and LCM 杭电

    Given two positive integers G and L, could you tell me how many solutions of (x, y, z) there are, sa ...

  6. HDU 4497 GCD and LCM (合数分解)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  7. HDU 4497 GCD and LCM (数学,质数分解)

    题意:给定G,L,分别是三个数最大公因数和最小公倍数,问你能找出多少对. 析:数学题,当时就想错了,就没找出规律,思路是这样的. 首先G和L有公因数,就是G,所以就可以用L除以G,然后只要找从1-(n ...

  8. hdu 4497 GCD and LCM 质因素分解+排列组合or容斥原理

    //昨天把一个i写成1了 然后挂了一下午 首先进行质因数分解g=a1^b1+a2^b2...... l=a1^b1'+a2^b2'.......,然后判断两种不可行情况:1,g的分解式中有l的分解式中 ...

  9. hdu 4497 GCD and LCM 数学

    GCD and LCM Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4 ...

随机推荐

  1. 面试题_Spring基础篇

    Spring基础题 1. 什 么 是 Spring? Spring 是 个 java 企 业 级 应 用 的 开 源 开 发 框 架 .Spring 主 要 用 来 开 发 Java 应 用 , 但 ...

  2. Robot Framework(七)创建用户关键字

    2.6创建用户关键字 关键字表用于通过将现有关键字组合在一起来创建新的更高级别关键字.这些关键字称为用户关键字,以区别于 测试库中实现的最低级库关键字.创建用户关键字的语法与创建测试用例的语法非常接近 ...

  3. Java图片裁剪

    public static void main(String[] args) throws IOException { String path = "C:/Users/yang/Deskto ...

  4. Linux设备驱动程序 之 open和release

    open方法 open方法提供给驱动程序以初始化的能力,在大部分驱动程序汇总,open应该完成以下工作: 1. 检查特定设备的错误,如设备为准备就绪或者硬件问题: 2. 如果设备是首次打开,则对其进行 ...

  5. LeetCode 128. 最长连续序列(Longest Consecutive Sequence)

    题目描述 给定一个未排序的整数数组,找出最长连续序列的长度. 要求算法的时间复杂度为 O(n). 示例: 输入: [100, 4, 200, 1, 3, 2] 输出: 4 解释: 最长连续序列是 [1 ...

  6. <HTML>在一个表格内嵌套另一个表格时,如何居中?

    在一个表格内嵌套另一个表格时,如何居中? 假设大表格为: <table id="tableRow"> <tr> <th>City</th& ...

  7. LC 351. Android Unlock Patterns

    Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total ...

  8. UDDI:百科

    ylbtech-UDDI:百科 UDDI是一种用于描述.发现.集成Web Service的技术,它是Web Service协议栈的一个重要部分.通过UDDI,企业可以根据自己的需要动态查找并使用Web ...

  9. 003-tomcat配置文件-server、tomcat-users

    1.server.xml讲解 位于conf下 <?xml version="1.0" encoding="UTF-8"?> <!-- Serv ...

  10. MySQL数据库同步工具的设计与实现

    一.背景 在测试过程中,对于不同的测试团队,出于不同的测试目的,我们可能会有多套测试环境.在产品版本迭代过程中,根据业务需求,会对数据库的结构进行一些修改,如:新增表.字段.索引,修改表.字段索引等操 ...