题意

从 $n$ 个点中选择一点,使得其他点到其的切比雪夫距离最小($0 < n \leq 1e5$).

分析

定理:$(x_1, y_1)$ 与 $(x_2, y_2)$ 的曼哈顿距离等于 $(x_1-y_1, x_1+y_1)$ 与 $(x_2-y_2, x_2+y_2)$ 的切比雪夫距离。

转换成曼哈顿距离中的坐标,求曼哈顿距离。

由于这个点必须是 $n$ 个点中的一点,所以 $x,y$ 还有限制关系(不然直接排序取中点就完事了)。

我们对分别对 $x,y$ 排序并求出前缀和,

然后枚举这 $n$ 个点,对于每个点,可以 $O(log n)$ 得到 $x$ 方向和 $y$ 方向的绝对值之和,两者相加即是答案。

#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const ll INF = (1LL) << ;
const int maxn = 1e5 + ;
int n, x[maxn], y[maxn], sx[maxn], sy[maxn];;
ll sum_x[maxn], sum_y[maxn]; struct Node{
int x, y, id;
}p[maxn]; int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
for(int i = ;i <= n;i++)
{
int a, b;
scanf("%d%d", &a, &b);
x[i] = sx[i] = a+b; y[i] = sy[i] = b-a;; //为了保证为整数,扩大了两倍
}
sort(sx+, sx+n+);
sort(sy+, sy+n+);
for(int i = ;i <= n;i++)
{
sum_x[i] = sum_x[i-] + sx[i];
sum_y[i] = sum_y[i-] + sy[i];
} ll ans = INF;
for(int i = ;i <= n;i++) //枚举每个点
{
ll px = lower_bound(sx+, sx+n+, x[i]) - sx; //如果之前记录下来,就可以O(1)
ll py = lower_bound(sy+, sy+n+, y[i]) - sy;
ll tmp = px*x[i] - sum_x[px] + sum_x[n] - sum_x[px] - (n-px)*x[i]; //相乘爆int
tmp += py*y[i] - sum_y[py] + sum_y[n] - sum_y[py] - (n-py)*y[i];
if(tmp < ans) ans = tmp;
}
printf("%lld\n", ans/);
}
}

参考链接:https://www.cnblogs.com/SGCollin/p/9636955.html

Hdu 4312-Meeting point-2——哈夫曼距离与切比雪夫距离的更多相关文章

  1. hdu 2527 Safe Or Unsafe (哈夫曼树)

    Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  2. HDU 4312 Meeting point-2(切比雪夫距离转曼哈顿距离)

    http://acm.hdu.edu.cn/showproblem.php?pid=4312 题意:在上一题的基础上,由四个方向改为了八个方向. 思路: 引用自http://blog.csdn.net ...

  3. HDU 4311 Meeting point-1 && HDU 4312 Meeting point-2

    这俩个题  题意::给出N(<1e5)个点求找到一个点作为聚会的地方,使每个点到达这里的距离最小.4311是 曼哈顿距离 4312是 切比雪夫距离: 曼哈顿距离 :大家都知道 对于二维坐标系a( ...

  4. HDU 4311 Meeting point-1 求一个点到其它点的曼哈顿距离之和

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4311 解题报告:在一个平面上有 n 个点,求一个点到其它的 n 个点的距离之和最小是多少. 首先不得不 ...

  5. Hdu 4312-Meeting point-2 切比雪夫距离,曼哈顿距离,前缀和

    题目: http://acm.hdu.edu.cn/showproblem.php?pid=4312 Meeting point-2 Time Limit: 2000/1000 MS (Java/Ot ...

  6. Hdu OJ 5884-Sort (2016 ACM/ICPC Asia Regional Qingdao Online)(二分+优化哈夫曼)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5884 题目大意:有n个有序的序列,对于第i个序列有ai个元素. 现在有一个程序每次能够归并k个序列, ...

  7. HDU 1053 & HDU 2527 哈夫曼编码

    http://acm.hdu.edu.cn/showproblem.php?pid=1053 #include <iostream> #include <cstdio> #in ...

  8. 两个队列+k叉哈夫曼树 HDU 5884

    // 两个队列+k叉哈夫曼树 HDU 5884 // camp题解: // 题意:nn个有序序列的归并排序.每次可以选择不超过kk个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过TT, ...

  9. 随手练——HDU Safe Or Unsafe (小根堆解决哈夫曼问题)

    HDU 2527 :http://acm.hdu.edu.cn/showproblem.php?pid=2527 哈夫曼树,学完就忘得差不多了,题目的意思都没看懂,有时间复习下,看了别人的才知道是怎么 ...

随机推荐

  1. Djang简单使用

    用户访问内容 ​ 用户能够访问的所有的资源,都是程序猿提前暴露的,如果没有暴露,用户是不能进行访问的. diango重启的问题 ​ 当我们更改django中的代码的时候,django内部会检测到我们更 ...

  2. Spring bean加载之1:BeanFactory和FactoryBean

    BeanFactory BeanFactory:以Factory结尾,表示它是一个工厂类(接口),用于管理Bean的一个工厂.在Spring中,BeanFactory是IOC容器的核心接口,它的职责包 ...

  3. springmvc流程 struts2 spring Hibernate 优缺点 使用场景介绍

    为什么使用HandlerAdapter? SpringMVC使用一个Servlet(DispacherServlet)代理所有的请求 , SpringMVC中的处理器是方法级别的处理器,而非类级别的处 ...

  4. 最简容器动手小实践——FC坦克大战游戏容器化

    FC 经典力作相信大家一点也不陌生.童年时期最频繁的操作莫过于跳关,在 果断跳到最后一关之后,一般都是以惨败告终,所以还是一关一关的过原始积累才能笑到最后.这款游戏的经典就在于双人配合,守家吃装备.也 ...

  5. vue防止闪屏小技巧:[v-cloak]

    css 内添加此属性[v-cloak] { display: none; } html中引入即可 <div v-cloak> {{ message }} </div> 如果觉得 ...

  6. 调用WebService时加入身份验证,以拒绝未授权的访问

    众所周知,WebService是为企业需求提供的在线应用服务,其他公司或应用软件能够通过Internet来访问并使用这项在线服务.但在有些时候的某些应用服务不希望被未授权访问,那么此时我们可以一下几种 ...

  7. Linux 查询端口被占用命令

    1.lsof -i:端口号 用于查看某一端口的占用情况,比如查看8000端口使用情况,lsof -i:8000 lsof -i:8080:查看8080端口占用 lsof abc.txt:显示开启文件a ...

  8. 使用其他身份运行计算机(DOS命令)

    runas/user:administrator cmd d: cd esop sfispri.ini

  9. ReactNative使用 react-navigation 详解

    react-navigation是官方主推的导航组件,致力于解决导航卡顿,数据传递,Tabbar和navigator布局,支持redux. 最新版本为3.x,大多文档介绍的是 1.x 或 2.x 的用 ...

  10. MonkeyRunner——Mac

    1. MonkeyRunner介绍: Android的SDK中集成了三个可用来进行自动化测试的工具:Monkey.MonkeyRunner和Robotium.这三个测试工具都是基于黑盒测试. Monk ...