Description

Given n books and the i-th book has pages[i] pages. There are k persons to copy these books.

These books list in a row and each person can claim a continous range of books. For example, one copier can copy the books from i-th to j-th continously, but he can not copy the 1st book, 2nd book and 4th book (without 3rd book).

They start copying books at the same time and they all cost 1 minute to copy 1 page of a book. What's the best strategy to assign books so that the slowest copier can finish at earliest time?

Return the shortest time that the slowest copier spends.

The sum of book pages is less than or equal to 2147483647

Example

Example 1:

Input: pages = [3, 2, 4], k = 2
Output: 5
Explanation:
First person spends 5 minutes to copy book 1 and book 2.
Second person spends 4 minutes to copy book 3.

Example 2:

Input: pages = [3, 2, 4], k = 3
Output: 4
Explanation: Each person copies one of the books.

Challenge

O(nk) time

思路:

可以使用二分或者动态规划解决这道题目. 不过更推荐二分答案的写法, 它更节省空间, 思路简洁, 容易编码.

对于假定的时间上限 tm 我们可以使用贪心的思想判断这 k 个人能否完成复印 n 本书的任务: 将尽可能多的书分给同一个人, 判断复印完这 n 本书需要的人数是否不大于 k 即可.

而时间上限 tm 与可否完成任务(0或1)这两个量之间具有单调性关系, 所以可以对 tm 进行二分查找, 查找最小的 tm, 使得任务可以完成.

public class Solution {
/**
* @param pages: an array of integers
* @param k: An integer
* @return: an integer
*/
public int copyBooks(int[] pages, int k) {
if (pages == null || pages.length == 0) {
return 0;
} int left = 0;
int right = Integer.MAX_VALUE; while (left < right) {
int mid = left + (right - left) / 2;
if (check(pages, k, mid)) {
right = mid;
} else {
left = mid + 1;
}
}
if (check(pages, k, left)) {
return left;
}
return right;
} private boolean check(int[] pages, int k, int limit) {
int num = 0;
int left = 0;
for (int item : pages) {
if (item > limit) {
return false;
}
if (item > left) {
num++;
left = limit;
}
left -= item;
}
return num <= k;
}
}

  

Copy Books的更多相关文章

  1. [LintCode] Copy Books 复印书籍

    Given an array A of integer with size of n( means n books and number of pages of each book) and k pe ...

  2. Copy Books II

    Description Given n books and each book has the same number of pages. There are k persons to copy th ...

  3. LintCode "Copy Books"

    Classic DP. The initial intuitive O(k*n^2) solution is like this: class Solution { public: /** * @pa ...

  4. [LintCode]——目录

    Yet Another Source Code for LintCode Current Status : 232AC / 289ALL in Language C++, Up to date (20 ...

  5. 九章lintcode作业题

    1 - 从strStr谈面试技巧与代码风格 必做题: 13.字符串查找 要求:如题 思路:(自写AC)双重循环,内循环读完则成功 还可以用Rabin,KMP算法等 public int strStr( ...

  6. postgresql批量备份和恢复数据表

    备份数据库:pg_dump -h localhost -U root demo02 > /home/arno/dumps/demo02.bak 恢复数据库:psql -h localhost - ...

  7. ETL面试题集锦

    1. What is a logical data mapping and what does it mean to the ETL team? 什么是逻辑数据映射?它对ETL项目组的作用是什么? 答 ...

  8. ETL面试题

    1. What is a logical data mapping and what does it mean to the ETL team? 什么是逻辑数据映射?它对ETL项目组的作用是什么? 答 ...

  9. 二分难题 && deque

    141. Sqrt(x) https://www.lintcode.com/problem/sqrtx/description?_from=ladder&&fromId=4 publi ...

随机推荐

  1. LeetCode 142. 环形链表 II(Linked List Cycle II)

    142. 环形链表 II 142. Linked List Cycle II 题目描述 给定一个链表,返回链表开始入环的第一个节点.如果链表无环,则返回 null. 为了表示给定链表中的环,我们使用整 ...

  2. LeetCode 590. N叉树的后序遍历(N-ary Tree Postorder Traversal)

    590. N叉树的后序遍历 590. N-ary Tree Postorder Traversal 题目描述 给定一个 N 叉树,返回其节点值的后序遍历. LeetCode590. N-ary Tre ...

  3. Quartz.Net—TriggerBuilder

    TriggerBuilder TriggerBuilder是一个建造者模式,链式建造.通过静态方法构建一个TriggerBuilder实例,然后再调用类方法Build()创建一个ITrigger的实现 ...

  4. Object 方法的 hashCode,equals方法源码

    文章目录 hashCode方法注释 equals 方法注释 equals 方法 hashCode方法注释 Object 的 hashCode 方法,是本地方法: Returns a hash code ...

  5. Python28之文件1

    因为懂你,所以永恒 一.文件处理的重要性: 程序处理的数据都是在提取到内存,然后由CPU进行处理,而当断电或系统异常关机时,程序所处理的结果在内存中不会被保存.像永久的保存处理结果,对于windows ...

  6. Pycharm(Eclipse)常用快捷键

    在File_Settings_Keymap中可以设置: 确定快捷键模式为Eclipse 看方法的源码:ctrl+鼠标左键 回退之前代码:alt+左键 前进之前代码:alt+右键 调换相邻两行代码位置: ...

  7. Account locked due to 25 failed logins

    Account locked due to 25 failed logins  pam_tally2 --user=ops  #查看   pam_tally2 --user=ops --reset # ...

  8. git合并原则

    目前实验结果为: 假设有master和branch1,用master合并branch1时(在master分支中执行git merge branch1): 1.在同一个地方,master做了修改,bra ...

  9. MySQL 索引机制

    MySQL 原理篇 MySQL 索引机制 MySQL 体系结构及存储引擎 MySQL 语句执行过程详解 MySQL 执行计划详解 MySQL InnoDB 缓冲池 MySQL InnoDB 事务 My ...

  10. iOS - 处理通话或录音状态中界面错乱的重布局

    iphone设备在通话或录音状态中,状态栏下移了20个像素,这时controller的view的frame的高度就减少了20个像素,所以我们需要根据view的frame去布局子view.但是是,当状态 ...