题目链接

Observations

含有 $n$ 个点且 key(以下也称 key 为「权值」)是 1 到 $n$ 的 BST 具有下列性质:

若 $k$ 是一个非根叶子且是个左儿子,则 $k$ 的父亲是 $k+1$ 。

证明:假设 $k$ 的父亲是 $p$ 且 $p \ne k + 1$,则 $p > k + 1$;显然 $k + 1$ 不可能是 $k$ 的祖先。
设 $k$ 和 $k + 1$ 的最近公共祖先是 $t$,则有 $k < t < k + 1$ 或者 $ k + 1 < t < k$,矛盾!

同理可证,若 $k$ 是一个非根的叶子且是个右儿子,则 $k$ 的父亲是 $k - 1$ 。

注:上述性质也可以从「BST 的任意子树中 key 都是连续的」这个性质推出。


从而可以得出,striped BST 的所有叶子都是左儿子。


perfectly balanced BST 只有最后一层可能不满,其他层都是满的。

$n$ 个点的 perfectly balanced BST 的高度是 $\floor{\log n}$ 。


Q:是否只要满足

  • 所有叶子节点都是左儿子
  • 除了最后一层,每层都是满的

就一定存在一种填充权值的方案使得这棵树是一棵 perfectly balanced striped BST?
A:不是。

递推

有根树具有天然的递归结构。

容易看出

  1. perfectly balanced striped BST 的任意子树也是 perfectly balanced striped BST。
  2. 可以把任意一棵 $k$ 个点的子树的权值范围变成 $1$ 到 $k$ 且保持其为 striped BST。换言之,我们只需要考虑权值从 1 开始的情形。这里用到了 BST 的任意子树中 key 值连续的性质。

欲求 $n$ 个点的 perfectly balanced striped BST 的数量,可以枚举根节点的权值。一棵子树内的权值必定是连续的,根节点的权值确定后,根的左右子树的节点数就确定了。设根节点的权值是 $r$,则左子树中有 $r - 1$ 个点,权值范围是 $1$ 到 $r - 1$;右子树中有 $n - r$ 个点,权值范围是 $r + 1$ 到 $n$ 。左子树的根的权值的奇偶性须跟 $r$ 不同,换言之,左子树的根的权值须与其中点的个数的奇偶性相同。右子树的根节点的权值须跟 $r$ 同奇偶。设右子树的根的权值是 $w$;把右子树的权值平移到 $1$ 到 $n - r$ 以后,$w$ 对应于 $w - r$,$w$ 与 $r$ 同奇偶意味着 $w - r$ 是偶数。

总而言之,一个 $n$ 个节点,权值是 $1, 2, \dots, n$ 的 perfectly balanced striped BST 能作为根的左子树的必要条件是其根的权值与其中节点数同奇偶;能作为根的右子树的必要条件是其根的权值是偶数。

设 $T_1, T_2$ 是两棵 perfectly balanced striped BST。
若以 $T_1$ 为左子树,$T_2$ 为右子树能组合成一棵新的 perfectly balanced striped BST,则 $T_1, T_2$ 除了需要满足上述条件外,还需满足二者高度相等或二者高度相差 $1$ 且高度较小者是完美二叉树。

注:从上一节的分析可知,子树是完美二叉树的情形,只有一个点的树这一种情况;即下图所示的情形

不难注意到,(i) 组合成的新树可以作为左子树当且仅当新树的右子树中有偶数个点;(ii) 组合成的新树可作为右子树当且仅当新树的左子树中有奇数个点。

对于 $n \ge 5$,$n$ 个点的 perfectly balanced striped BST 的根节点的左右两棵子树的高度都不小于 1 。从上一节得出的两必要条件可以推出,此时左右两子树都不是完美二叉树,这意味着二者高度相同。设 $n$ 个点的 perfectly balanced BST 的高度是 $h$,则根的左右子树的高度都是 $h - 1$ 。

考虑高度为 $i$($i \ge 2$)的 perfectly balanced striped BST,将其中能作为高度为 $i + 1$ 的 perfectly balanced striped BST 的根的左子树和右子树的 perfectly balanced striped BST 的「信息」分别放到两个列表 $L_i$ 和 $R_i$ 中。信息表为有序二元组:(节点数, 方案数)。
从 $L_i$ 中任取一元素 $\ell$,从 $R_i$ 中任取一元素 $r$,通过组合 $\ell, r$ 来构造 $L_{i + 1}$ 和 $R_{i + 1}$ 。

$L_{-1} = \{(0, 1)\}, R_{-1} = \{(0, 1)\}$;$(0, 1)$ 对应于空图
$L_0 = \{ (1, 1)\}, R_0 = \emptyset$;
$L_1 = \{(2, 1)\}, R_1 = \{(2, 1)\}$
$L_2 = \{(4, 1), (5, 1)\}, R_2 = \{(4, 1)\}$;$(4, 1)$ 是由 $L_0$ 中的 $(1,1)$ 和 $L_1$ 中的 $(2, 1)$ 组合得到的,上图即对应于 $(4, 1)$。
$L_3 = \{(9, 1), (10, 1)\}, R_3 = \{(10, 1)\}$
$L_4 = \{(20, 1), (21, 1) \}, R_4 = \{(20, 1)\}$
$\vdots$

从以上分析中不难看出,给定 $n$,number of perfectly balanced striped binary search trees with $n$ vertices that have distinct integer keys between $1$ and $n$, inclusive 要么是 0 要么是 1。

Codeforces 1237E Perfect Balanced Binary Search Tree的更多相关文章

  1. Convert Sorted List to Balanced Binary Search Tree leetcode

    题目:将非递减有序的链表转化为平衡二叉查找树! 参考的博客:http://blog.csdn.net/worldwindjp/article/details/39722643 利用递归思想:首先找到链 ...

  2. Convert Sorted List to Balanced Binary Search Tree (BST)

    (http://leetcode.com/2010/11/convert-sorted-list-to-balanced-binary.html) Given a singly linked list ...

  3. Convert Sorted Array to Balanced Binary Search Tree (BST)

    (http://leetcode.com/2010/11/convert-sorted-array-into-balanced.html) Given an array where elements ...

  4. Solution -「CF 1237E」Balanced Binary Search Trees

    \(\mathcal{Description}\)   Link.   定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...

  5. Binary Search Tree In-Order Traversal Iterative Solution

    Given a binary search tree, print the elements in-order iteratively without using recursion. Note:Be ...

  6. CCI4.4/LintCode Balanced Binary Tree, Binary Tree, Binary Search Tree

    Binary Tree: 0到2个子节点; Binary Search Tree: 所有左边的子节点 < node自身 < 所有右边的子节点: 1. Full类型: 除最下面一层外, 每一 ...

  7. LeetCode解题报告——Convert Sorted List to Binary Search Tree & Populating Next Right Pointers in Each Node & Word Ladder

    1. Convert Sorted List to Binary Search Tree Given a singly linked list where elements are sorted in ...

  8. [LeetCode] 108. Convert Sorted Array to Binary Search Tree 把有序数组转成二叉搜索树

    Given an array where elements are sorted in ascending order, convert it to a height balanced BST. Fo ...

  9. [LeetCode] Closest Binary Search Tree Value II 最近的二分搜索树的值之二

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

随机推荐

  1. mac使用sublime text3打开当前文件夹的终端

    打开sublime text3,同时按住shift+command+p打开扩展列表, 选择Package Control: Install Pageage,回车. 在输入框输入: terminal,回 ...

  2. Another Filling the Grid

    E. Another Filling the Grid 参考:Codeforces Round #589 (Div. 2)-E. Another Filling the Grid-容斥定理 容斥这个东 ...

  3. python-获取程序的路径

    python获取当前路径 import os,sys 使用sys.path[0].sys.argv[0].os.getcwd().os.path.abspath(file).os.path.realp ...

  4. C#, Java, PHP, Python和Javascript几种语言的AES加密解密实现

    特别提示:本人博客部分有参考网络其他博客,但均是本人亲手编写过并验证通过.如发现博客有错误,请及时提出以免误导其他人,谢谢!欢迎转载,但记得标明文章出处:http://www.cnblogs.com/ ...

  5. 基于 XML 的 AOP 配置(1)

    本文连接:https://www.cnblogs.com/qzhc/p/11969734.html 接下来我将用一个很简单的实例 1. 环境搭建 1.1. 第一步:准备必要的代码 业务层代码: Acc ...

  6. Python基于Pymssql模块实现连接SQL Server数据库的方法

    首先,安装pymssql第三方库pip install pymssql 其次,导入pymssql库 最后们就可以连接数据库了 import pymssql server = "10.10.9 ...

  7. Java-GC 垃圾收集器(HotSpot)

    垃圾收集器为垃圾收集算法的具体实现,是执行垃圾收集算法的,是守护线程. HotSpot 虚拟机采用分代收集(JVM 规范并未对堆区进行划分),将堆分为年轻代和老年代,垃圾收集器也按照这样区分.不过已有 ...

  8. ccf 201409-3 字符串匹配(toupper,tolower)

     ccf 201409-3 字符串匹配(toupper,tolower) 问题描述 给出一个字符串和多行文字,在这些文字中找到字符串出现的那些行.你的程序还需支持大小写敏感选项:当选项打开时,表示同一 ...

  9. EDM数据营销之电商篇| 六大事务性邮件,环环相扣打造极致用户体验!

    “以用户为中心”的时代,电商们致力于打造极致的用户体验,想尽各式新颖营销办法,但难免还是会出现营销断层,以至于和用户间无法达到完整的交互. 本次Focussend以邮件营销为例,聚焦用户从浏览到支付等 ...

  10. MonkeyRunner基本操作

    1. #导入模块; from com.android.monkeyrunner import MonkeyRunner, MonkeyDevice, MonkeyImage 2. #连接当前设备,并返 ...