Codevs 1213 解的个数(exgcd)
1213 解的个数
时间限制: 1 s
空间限制: 128000 KB
题目等级 : 黄金 Gold
题目描述 Description
已知整数x,y满足如下面的条件:
ax+by+c=0
p<=x<=q
r<=y<=s
求满足这些条件的x,y的个数。
输入描述 Input Description
第一行有一个整数n(n<=10),表示有n个任务。n<=10
以下有n行,每行有7个整数,分别为:a,b,c,p,q,r,s。均不超过108。
输出描述 Output Description
共n行,第i行是第i个任务的解的个数。
样例输入 Sample Input
2
2 3 -7 0 10 0 10
1 1 1 -10 10 -9 9
样例输出 Sample Output
1
19
数据范围及提示 Data Size & Hint
分类标签 Tags
欧几里德定理 数论
/*
裸的扩展欧几里得问题.
不过要特判一次函数的情况.
W到挺(如图).
呵呵了..
*/
#include<iostream>
#include<cstdio>
#include<algorithm>
#define LL long long
using namespace std;
LL n,a,b,c,lx,rx,ly,ry,x,y,a1,b1;
LL ans;
inline LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
void ex_gcd(LL a,LL b,LL &x,LL &y)
{
if(!b){x=1,y=0;return ;}
else ex_gcd(b,a%b,y,x),y-=x*(a/b);
}
void slove()
{
int g=__gcd(a,b);
c*=-1;
if(!a&&!b)
{
if(c||lx>rx||ly>ry) printf("0\n");
else cout<<(rx-lx+1)*(ry-ly+1)<<endl;
return ;
}
if(!a)
{
y=c/b;
if(ly<=y&&y<=ry&&!(c%b)) printf("1\n");
else printf("0\n");
return ;
}
if(!b)
{
x=c/a;
if(lx<=x&&x<=rx&&!(c%a)) printf("1\n");
else printf("0\n");
return ;
}
if(c%g)
{
printf("0\n");return ;
}
x=y=0;ans=0;
ex_gcd(a,b,x,y);
x=x*c/g,y=y*c/g;
a=a/g,b=b/g;
int t=0;
if(x<lx)
{
while(x+t*b<lx) t++;
while(x+t*b<rx)
{
if(ly<=y-t*a&&y-t*a<=ry) ans++;
t++;
}
}
else if(x>rx)
{
while(x-t*b>rx) t++;
while(x-t*b>lx)
{
if(ly<=y+t*a&&y+t*a<=ry) ans++;
t++;
}
}
else if(x>=lx&&x<=rx)
{
while(x+t*b<=rx)
{
if(ly<=y-t*a&&y-t*a<=ry) ans++;
t++;
}
t=-1;
while(x+t*b>=lx)
{
if(ly<=y-t*a&&y-t*a<=ry) ans++;
t--;
}
}
printf("%lld\n",ans);
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
{
a=read(),b=read(),c=read(),lx=read(),rx=read(),ly=read(),ry=read();
slove();
}
return 0;
}
Codevs 1213 解的个数(exgcd)的更多相关文章
- 扩展gcd codevs 1213 解的个数
codevs 1213 解的个数 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 已知整数x,y满足如下面的条件: ax+by ...
- codevs 1213 解的个数
1213 解的个数 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 已知整数x,y满足如下面的条件: ax+by+c = ...
- codevs 1213 解的个数(我去年打了个表 - -)
#include<iostream> #include<cstdio> #include<cstring> using namespace std; int T,x ...
- 解的个数(codevs 1213)
题目描述 Description 已知整数x,y满足如下面的条件: ax+by+c = 0 p<=x<=q r<=y<=s 求满足这些条件的x,y的个数. 输入描述 Input ...
- codevs1213 解的个数
题目描述 Description 已知整数x,y满足如下面的条件: ax+by+c = 0 p<=x<=q r<=y<=s 求满足这些条件的x,y的个数. 输入描述 Input ...
- n元线性方程非负整数解的个数问题
设方程x1+x2+x3+...+xn = m(m是常数) 这个方程的非负整数解的个数有(m+n-1)!/((n-1)!m!),也就是C(n+m-1,m). 具体解释就是m个1和n-1个0做重集的全排列 ...
- P1098 方程解的个数
题目描述 给出一个正整数N,请你求出x+y+z=N这个方程的正整数解的组数(1<=x<=y<=z<1000).其中,1<=x<=y<=z<=N . 输入 ...
- HDU1573 线性同余方程(解的个数)
X问题 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- CODEVS——T1979 第K个数
http://codevs.cn/problem/1979/ 时间限制: 1 s 空间限制: 1000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Descript ...
随机推荐
- 阿里云日志服务 ilogtail 卸载方法
之前使用阿里云日志服务,按照文档安装了ilogtail.后面不需要了,却找不到卸载文档.仔细查看ilogtail的安装脚本后,发现里面有卸载方法. wget http://logtail-releas ...
- 201709-3 JSON查询
问题描述 JSON (JavaScript Object Notation) 是一种轻量级的数据交换格式,可以用来描述半结构化的数据.JSON 格式中的基本单元是值 (value),出于简化的目的本题 ...
- nginx+keepalived高可用
准备工作: yum install -y gcc openssl-devel pcre-devel install iptables-services setenforce 0 sed -ri 's/ ...
- Validator自动验证与手动验证
自动: public JResult projectAdd(@Valid Project project, BindingResult result) {Map<String,Object> ...
- HashMap—— values() remove方法 containsKey()方法 containsValue()方法
values()方法:看下面的实例,就是把所有的value值封装成一个connection型的数组 Map<Integer,Student> students=new HashMap< ...
- 修改NPM默认全局安装路径
场景: 最近在新电脑上鼓捣完环境后,打算切换下源,结果使用全局安装的nrm时提示找不到命令,之前都是这么用现在怎么不行了呢? 排查过程: 于是各种折腾,发现- g安装的插件目录在C盘中的某个路径中,后 ...
- Linux学习笔记:7个ssh命令用法
通过远程控制管理多台服务器. 远程工具:telnet.ssh.vnc ssh采用密文的传输方式,简单安全.Secure Shell 缩写 SSH. 1.基本用法 ssh 192.168.1.1 默认使 ...
- react——使用this.setState({ })修改state状态值
使用this.setState({ }) 还可以修改后追加传的参数 效果如下: this.setState({ })方法是异步的
- postgresql与mysql 优缺点
MySQL的主要优点 (速度,流行,window,线程,事务) 1. 首先是速度,MySQL通常要比PostgreSQL快得多.MySQL自已也宣称速度是他们追求的主要目标之一,基于这个原因,MySQ ...
- elementUI使用实录
新项目开发用到了elementUI,但是对这个虽然会用,但是细枝末节的东西每次都需要看官方文档才能想起来怎么用,故,记之. 1.form表单 -- 表单验证 在防止用户犯错的前提下,尽可能让用户更早地 ...