Matrix factorization

导语:承载上集的矩阵代数入门,今天来聊聊进阶版,矩阵分解。其他集数可在[线性代数]标籤文章找到。有空再弄目录什麽的。

Matrix factorization is quite like an application of invertible matrices, where L is an invertible matrix in LU factorization.

As you may have seen, that solving Ax=b for x can be tedious with all the row-reduction algorithm. Here, we are going to explore another efficient algorithm for find x in matrix equation, which is LU Factorization. Suppose we are given L and U in the following form which reconstruct A. L is an invertible unit lower triangular mxm matrix, while U is the mxn echelon form of A. Recall a way to solve for x is by x=A-1b and A-1 need to be invertible. Since L is invertible, LU is also invertible as proved in previous article in this series. The motivation here is that if we are to compute x for different b, we need to compute A-1bi for every single b. That's not desirable and we should look for ways to circumvent this…

Suppose LU are already given, expressing A=LU is just the first step in LU factorization. Remember our goal of using matrix factorization is to solve for x in matrix equation. So we rely on the following:

Above suggests by row-reducing the following, we can get x. So we introduce y as the intermediate results along our way to get b. Noted that we still need to calculate each b individually for Ax=b, just that with the assistance of LU, less steps are involved.

As we know L as an lower unit triangular matrix, columns must be linearly independent. Since it's mxm, L is also invertible. This means the following:

Indeed, when you get a lower triangular unit matrix L, it's trivial to get Imxm from it. As U is the echelon form of A and is of size mxn, so identity matrix is not guaranteed as the reduced echelon form may not be of square matrix.

The LU factorization algorithm

The prerequisite for using this algorithm is that, given any matrix A in Ax=b, A must be reduceable to echelon form, U, using row replacements of rows in a TOP-DOWN manner. However, this is always a hard requirement to meet and people sometimes relax this restriction into allowing row interchanges before performing top-down sequential row replacement in A. If the requirements are satisfied, it's guaranteed we can get the lower triangular unit matrix L, and the proof of which is shown below:

And if we apply the same sequence of elementary matrices onto L, we restore the identity matrix I as follows:

But now it sounds a bit abstract. What exactly does give us btw? And how is it utilized to find L? The following example shows how. During the row-reduction of A into U, entries below pivot position in each pivot column is zeroed-out. The reverse of elementary row operations just require us to gather all pivot columns before their transformation and pack them into a nxn matrix.

When all pivot columns before row replacement gathered, L is easily available.

Examples

例子不定期更新

[线性代数] 矩阵代数進階:矩阵分解 Matrix factorization的更多相关文章

  1. 矩阵分解(Matrix Factorization)与推荐系统

    转自:http://www.tuicool.com/articles/RV3m6n 对于矩阵分解的梯度下降推导参考如下:

  2. 【Math for ML】矩阵分解(Matrix Decompositions) (下)

    [Math for ML]矩阵分解(Matrix Decompositions) (上) I. 奇异值分解(Singular Value Decomposition) 1. 定义 Singular V ...

  3. 【Math for ML】矩阵分解(Matrix Decompositions) (上)

    I. 行列式(Determinants)和迹(Trace) 1. 行列式(Determinants) 为避免和绝对值符号混淆,本文一般使用\(det(A)\)来表示矩阵\(A\)的行列式.另外这里的\ ...

  4. 推荐系统之矩阵分解及C++实现

    1.引言 矩阵分解(Matrix Factorization, MF)是传统推荐系统最为经典的算法,思想来源于数学中的奇异值分解(SVD), 但是与SVD 还是有些不同,形式就可以看出SVD将原始的评 ...

  5. Mahout分布式运行实例:基于矩阵分解的协同过滤评分系统(一个命令实现文件格式的转换)

     Apr 08, 2014  Categories in tutorial tagged with Mahout hadoop 协同过滤  Joe Jiang 前言:之前配置Mahout时测试过一个简 ...

  6. matlab之矩阵分解

    矩阵分解 矩阵分解 (decomposition, factorization)是将矩阵拆解为数个矩阵的乘积. 1.三角分解法: 要求原矩阵为方阵,将之分解成一个上三角形矩阵(或是排列(permute ...

  7. Matrix Factorization SVD 矩阵分解

    Today we have learned the Matrix Factorization, and I want to record my study notes. Some kownledge ...

  8. 【RS】Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering - 基于拉普拉斯分布的稀疏概率矩阵分解协同过滤

    [论文标题]Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering  ...

  9. 【RS】List-wise learning to rank with matrix factorization for collaborative filtering - 结合列表启发排序和矩阵分解的协同过滤

    [论文标题]List-wise learning to rank with matrix factorization for collaborative filtering   (RecSys '10 ...

随机推荐

  1. .net SHA-256 SHA-1

    Framework 4.5 uses SHA-256 algorithm for the signature, and 4.0 uses SHA-1.

  2. 数据结构与算法--递归(recursion)

    递归的概念 简单的说: 递归就是方法自己调用自己,每次调用时传入不同的变量.递归有助于编程者解决复杂的问题,同时可以让代码变得简洁. 递归调用机制 我列举两个小案例,来帮助大家理解递归 1.打印问题 ...

  3. php上传文件报错以及对应代号信息-转载http://jewel-m.iteye.com/blog/1210344

    用PHP上传文件时,我们会用程序去监听浏览器发送过来的文件信息,首先会通 过$_FILES[fieldName]['error']的不同数值来判断此欲上传的文件状态是否正常.$_FILES[field ...

  4. 通过DB13备份SystemDB

    配置systemdb capital user name:SYSTEM save -back Save 现在可以通过DB13备份SystemDB Done. Congratulations!

  5. 微信小程序错误readFile:fail parameter error: parameter.filePath should be String instead of Undefined;

    我是在使用camera组件时遇到的该问题 原因是未保存文件路径(微信使用摄像头拍照后会把图片保存在一个临时的路径,所以你需要自己定义一个变量来存这个路径,以备下次使用该变量去访问文件) 所以加上你需要 ...

  6. Jerry带您了解Restful ABAP Programming模型系列之三:云端ABAP应用调试

    Jerry的Restful ABAP Programming模型介绍系列的前两篇文章: 30分钟用Restful ABAP Programming模型开发一个支持增删改查的Fiori应用 Jerry带 ...

  7. Android笔记(七) Android中的布局——线性布局

    我们的软件是由好多个界面组成的,而每个界面又由N多个控件组成,Android中借助布局来让各个空间有条不紊的摆放在界面上. 可以把布局看作是一个可以放置很多控件的容器,它可以按照一定的规律调整控件的位 ...

  8. Java Data JPA +hibernate 保存或者是查询遇到的坑

    由于项目需求,接触了Java Data JPA +hibernate,它的调用方式是controller调用service,service有实现的接口serviceimpl,serviceimpl调用 ...

  9. 【清单】值得「等待」的12个指示加载状态的 js 库

    以下优选 GitHub 上高 star 的指示加载状态的 JavaScript 库.另外这里还有10个有意思的 JavaScript 实战小项目供大家学习. 上期入口:一份数据分析学习清单.xls M ...

  10. 静态库 VS 动态库

    如何得到库 ①先写好一堆的.c文件(.c:我们所需要的各种工具函数) ②将这些.c编译为对应的.o ③将所有的这些.o打包为一个仓库文件(静态库或者动态库) 静态库:按照静态库的方式打包 动态库:按照 ...