(1). The numerical radius defines a norm on $\scrL(\scrH)$.

(2). $w(UAU^*)=w(A)$ for all $U\in \U(n)$.

(3). $w(A)\leq \sen{A}\leq 2w(A)$ for all $A$.

(4). $w(A)=\sen{A}$ if (but not only if) $A$ is normal.

Solution.

(1). We only need to show that $$\beex \bea w(A)=0&\ra \sef{x,Ax}=0,\quad \forall\ x:\sen{x}=1\\ &\ra \sef{y,Ax}=\frac{1}{4} \sum_{k=0}^3 i^k\sef{x+i^ky,A(x+i^ky)}=0,\quad\forall\ x,y:\sen{x}=\sen{y}=1\\ &\ra Ax=0,\quad \forall\ x:\sen{x}=1\\ &\ra A=0. \eea \eeex$$

(2). $$\beex \bea w(UAU^*)&=\sup_{\sen{x}=1}\sev{\sef{x,UAU^*}}\\ &=\sup_{\sen{x}=1}\sev{(U^*x)^*A(U^*x)}\\ &=\sup_{\sen{y}=1}\sev{y^*Ay}\quad\sex{y=U^*x}\\ &=w(A). \eea \eeex$$

(3). $$\beex \bea w(A)&=\sup_{\sen{x}=1}\sev{\sef{x,Ax}}\\ &\leq \sup_{\sen{x}=1} \sex{\sen{x}\cdot \sen{Ax}}\\ &=\sup_{\sen{x}=1}\sen{Ax}\\ &=\sen{A};\\ \sen{A}&=\sup_{\sen{x}=\sen{y}=1}\sev{\sef{y,Ax}}\\ &=\sup_{\sen{x}=\sen{y}=1} \sev{\frac{1}{4}\sum_{k=0}^3 i^k\sef{y+i^kx,A(y+i^kx)}}\\ &\leq \sup_{\sen{x}=\sen{y}=1} \frac{1}{4}\sum_{k=0}^3 \sev{\sef{y+i^kx,A(y+i^kx)}}\\ &\leq \sup_{\sen{x}=\sen{y}=1} \frac{1}{4}\sum_{k=0}^3 \sen{y+i^kx}^2\cdot w(A)\\ &=\sup_{\sen{x}=\sen{y}=1} \frac{1}{4}\cdot 4\sex{\sen{x}^2+\sen{y}^2} \cdot w(A)\\ &=2w(A). \eea \eeex$$

(4). If $A$ is normal, then by the spectral theorem, there exists a unitary $U$ such that $$\bex A=U\diag(\lm_1,\cdots,\lm_n)U^*, \eex$$ and hence $$\beex \bea \sen{Ax}^2&=\sef{Ax,Ax}\\ &=x^*A^*Ax\\ &=Ux^*\diag(|\lm_1|^2,\cdots,|\lm_n|^2)U^*x\\ &=\sum_{i=1}^n |\lm_i|^2|y_i|^2\quad\sex{y=U^*x}\\ &\leq \max_i\sen{\lm_i}^2\sen{y}^2\\ &\leq w(A)\sen{x}^2. \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.10的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

随机推荐

  1. python中变量

    在Python中,变量的概念基本上和初中代数的方程变量是一致的. 例如,对于方程式 y=x*x ,x就是变量.当x=2时,计算结果是4,当x=5时,计算结果是25. 只是在计算机程序中,变量不仅可以是 ...

  2. C# Windows - ListBox&CheckedListBox

    ListBox和CheckedListBox类的属性 属性 说明 SelectedIndex 这个值表明列表框中选中项的基于0的索引 ColumnWidth 在包含多个列的列表框中,这个属性指定列宽 ...

  3. 1046: [HAOI2007]上升序列 - BZOJ

    Description 对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ...

  4. [JavaScript] js验证身份证

    function checkIdCard(){     var vcity={11:"北京",12:"天津",13:"河北",14:&quo ...

  5. Untiy 接入 移动MM 详解

    原地址:http://www.cnblogs.com/alongu3d/p/3627936.html Untiy 接入 移动MM 详解 第一次接到师傅的任务(小龙),准备着手写untiy接入第三方SD ...

  6. c/c++ define用法

    define,无参宏定义的一般形式为:#define 标识符 字符串 外文名 define 词条范围 计算机专业用语 无参一般形式 #define 标识符 字符串 带参一般形式 #define 宏名( ...

  7. Emoji表情符号兼容方案(适用ios,android,wp等平台)

    http://blog.csdn.net/qdkfriend/article/details/7576524 Emoji表情符号兼容方案 一 什么是Emoji emoji就是表情符号:词义来自日语(え ...

  8. VMware linux与windows文件共享

    将要共享的文件做成一个iso文件,然后打开VMware

  9. java 布尔值一种赋值方法

    在研读jmeter的代码时发现一个很常见的布尔值赋值方式,记录下来备忘: public static void main(String[] args) { // TODO Auto-generated ...

  10. VS2013与MySql建立连接;您的项目引用了最新实体框架;但是,找不到数据链接所需的与版本兼容的实体框架数据库 EF6使用Mysql的技巧

    因为之前都是看别人的项目,而没有自己从头到尾建立一个项目,所以这次尝试搭建时就出现了问题,主要是ASP.Net MVC项目中VS2013和MySql的连接. 第一个问题: 数据库表已建好,相应的数据库 ...