[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.10
(1). The numerical radius defines a norm on $\scrL(\scrH)$.
(2). $w(UAU^*)=w(A)$ for all $U\in \U(n)$.
(3). $w(A)\leq \sen{A}\leq 2w(A)$ for all $A$.
(4). $w(A)=\sen{A}$ if (but not only if) $A$ is normal.
Solution.
(1). We only need to show that $$\beex \bea w(A)=0&\ra \sef{x,Ax}=0,\quad \forall\ x:\sen{x}=1\\ &\ra \sef{y,Ax}=\frac{1}{4} \sum_{k=0}^3 i^k\sef{x+i^ky,A(x+i^ky)}=0,\quad\forall\ x,y:\sen{x}=\sen{y}=1\\ &\ra Ax=0,\quad \forall\ x:\sen{x}=1\\ &\ra A=0. \eea \eeex$$
(2). $$\beex \bea w(UAU^*)&=\sup_{\sen{x}=1}\sev{\sef{x,UAU^*}}\\ &=\sup_{\sen{x}=1}\sev{(U^*x)^*A(U^*x)}\\ &=\sup_{\sen{y}=1}\sev{y^*Ay}\quad\sex{y=U^*x}\\ &=w(A). \eea \eeex$$
(3). $$\beex \bea w(A)&=\sup_{\sen{x}=1}\sev{\sef{x,Ax}}\\ &\leq \sup_{\sen{x}=1} \sex{\sen{x}\cdot \sen{Ax}}\\ &=\sup_{\sen{x}=1}\sen{Ax}\\ &=\sen{A};\\ \sen{A}&=\sup_{\sen{x}=\sen{y}=1}\sev{\sef{y,Ax}}\\ &=\sup_{\sen{x}=\sen{y}=1} \sev{\frac{1}{4}\sum_{k=0}^3 i^k\sef{y+i^kx,A(y+i^kx)}}\\ &\leq \sup_{\sen{x}=\sen{y}=1} \frac{1}{4}\sum_{k=0}^3 \sev{\sef{y+i^kx,A(y+i^kx)}}\\ &\leq \sup_{\sen{x}=\sen{y}=1} \frac{1}{4}\sum_{k=0}^3 \sen{y+i^kx}^2\cdot w(A)\\ &=\sup_{\sen{x}=\sen{y}=1} \frac{1}{4}\cdot 4\sex{\sen{x}^2+\sen{y}^2} \cdot w(A)\\ &=2w(A). \eea \eeex$$
(4). If $A$ is normal, then by the spectral theorem, there exists a unitary $U$ such that $$\bex A=U\diag(\lm_1,\cdots,\lm_n)U^*, \eex$$ and hence $$\beex \bea \sen{Ax}^2&=\sef{Ax,Ax}\\ &=x^*A^*Ax\\ &=Ux^*\diag(|\lm_1|^2,\cdots,|\lm_n|^2)U^*x\\ &=\sum_{i=1}^n |\lm_i|^2|y_i|^2\quad\sex{y=U^*x}\\ &\leq \max_i\sen{\lm_i}^2\sen{y}^2\\ &\leq w(A)\sen{x}^2. \eea \eeex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.10的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
随机推荐
- 【BZOJ 1067】 [SCOI2007]降雨量
Description 我们常常会说这样的话:“X年是自Y年以来降雨量最多的”.它的含义是X年的降雨量不超过Y年,且对于任意Y<Z<X,Z年的降雨量严格小于X年.例如2002,2003,2 ...
- willMoveToParentViewController 与 didMoveToParentViewController
在iOS 5.0以前,我们在一个UIViewController中这样组织相关的UIView 在以前,一个UIViewController的View可能有很多小的子view.这些子view很多时候被盖 ...
- Linux操作系统工作的基础
简介: 本文根据 Linux™ 系统工作基础的分析,对存储程序计算机.堆栈(函数调用堆栈)机制和中断机制进行概述.文中将为您提供操作系统(内核)如何工作的细节,进一步从宏观概述结合关键点进行微观(CS ...
- org.hibernate.PropertyAccessException: Null value was assigned to a property of primitive type setter of com.chen.vo.Dept.parentId
异常描述:执行以下的addAsHaveParentId2方法出现此异常: /*-----------------------类Dept.Dept.hbm.xml有parentId属性(数据库中有此列) ...
- 你不需要jQuery(五)
什么不用jQuery?因为它让你的网站体积变得臃肿.你的网站并不真的需要jQuery,不需要它带来的额外体积.带宽和加载时间. 用原生JavaScript简单实现jQuery提供的功能和方法 查找.选 ...
- bzoj 1222: [HNOI2001]产品加工 dp
1222: [HNOI2001]产品加工 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 381 Solved: 218[Submit][Status ...
- 怎样快糙猛的开始搞Kaggle比赛
- hdu 4101
比赛的时候先是受以前一个圣神海的题目 用了两遍DFS 第一遍标记出围墙 第二遍求围墙外和每块围墙降为1所需的攻击次数 结果爆栈 改为BFS后AC DFS的加了一句这个 #pragma comme ...
- 李洪强iOS开发拓展篇—UIDynamic(重力行为+碰撞检测)
iOS开发拓展篇—UIDynamic(重力行为+碰撞检测) 一.重力行为 说明:给定重力方向.加速度,让物体朝着重力方向掉落 1.方法 (1)UIGravityBehavior的初始化 - (inst ...
- PHP的执行原理/执行流程
http://www.cnblogs.com/hongfei/archive/2012/06/12/2547119.html 更深入的学习和了解可以查看下面: 风雨的博客http://www.laru ...