[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.10
(1). The numerical radius defines a norm on $\scrL(\scrH)$.
(2). $w(UAU^*)=w(A)$ for all $U\in \U(n)$.
(3). $w(A)\leq \sen{A}\leq 2w(A)$ for all $A$.
(4). $w(A)=\sen{A}$ if (but not only if) $A$ is normal.
Solution.
(1). We only need to show that $$\beex \bea w(A)=0&\ra \sef{x,Ax}=0,\quad \forall\ x:\sen{x}=1\\ &\ra \sef{y,Ax}=\frac{1}{4} \sum_{k=0}^3 i^k\sef{x+i^ky,A(x+i^ky)}=0,\quad\forall\ x,y:\sen{x}=\sen{y}=1\\ &\ra Ax=0,\quad \forall\ x:\sen{x}=1\\ &\ra A=0. \eea \eeex$$
(2). $$\beex \bea w(UAU^*)&=\sup_{\sen{x}=1}\sev{\sef{x,UAU^*}}\\ &=\sup_{\sen{x}=1}\sev{(U^*x)^*A(U^*x)}\\ &=\sup_{\sen{y}=1}\sev{y^*Ay}\quad\sex{y=U^*x}\\ &=w(A). \eea \eeex$$
(3). $$\beex \bea w(A)&=\sup_{\sen{x}=1}\sev{\sef{x,Ax}}\\ &\leq \sup_{\sen{x}=1} \sex{\sen{x}\cdot \sen{Ax}}\\ &=\sup_{\sen{x}=1}\sen{Ax}\\ &=\sen{A};\\ \sen{A}&=\sup_{\sen{x}=\sen{y}=1}\sev{\sef{y,Ax}}\\ &=\sup_{\sen{x}=\sen{y}=1} \sev{\frac{1}{4}\sum_{k=0}^3 i^k\sef{y+i^kx,A(y+i^kx)}}\\ &\leq \sup_{\sen{x}=\sen{y}=1} \frac{1}{4}\sum_{k=0}^3 \sev{\sef{y+i^kx,A(y+i^kx)}}\\ &\leq \sup_{\sen{x}=\sen{y}=1} \frac{1}{4}\sum_{k=0}^3 \sen{y+i^kx}^2\cdot w(A)\\ &=\sup_{\sen{x}=\sen{y}=1} \frac{1}{4}\cdot 4\sex{\sen{x}^2+\sen{y}^2} \cdot w(A)\\ &=2w(A). \eea \eeex$$
(4). If $A$ is normal, then by the spectral theorem, there exists a unitary $U$ such that $$\bex A=U\diag(\lm_1,\cdots,\lm_n)U^*, \eex$$ and hence $$\beex \bea \sen{Ax}^2&=\sef{Ax,Ax}\\ &=x^*A^*Ax\\ &=Ux^*\diag(|\lm_1|^2,\cdots,|\lm_n|^2)U^*x\\ &=\sum_{i=1}^n |\lm_i|^2|y_i|^2\quad\sex{y=U^*x}\\ &\leq \max_i\sen{\lm_i}^2\sen{y}^2\\ &\leq w(A)\sen{x}^2. \eea \eeex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.10的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
随机推荐
- Oracle 常用操作
修改数据库表名:rename [old-table] to [new-table]; while循环添加测试数据: declare i int:=1; begin while ...
- FormBorderStyle.None 时候最大化不遮盖任务栏
this.FormBorderStyle = FormBorderStyle.None; this.MaximumSize = new Size(Screen.PrimaryS ...
- js验证码倒计时
var wait=59; function time(){ if(wait >= 0){ $("#buttons").val("" + wait + &q ...
- uva 10986
ford 超时 使用优先队列的Dijkstra 算法 //#include <cstdio> //#include <cstring> //#include <algo ...
- 读取tiled地图
原地址:http://www.unity蛮牛.com/thread-20854-1-1.html Tile是一个非常好用的地图编辑器,一直以来我都在找支持tilemap的unity2D插件,但是找 ...
- SaaS系列介绍之一: SaaS的前身ASP介绍
1. 引言 未来将越来越不可预测,这是新经济最具挑战性的方面之一.商务和技术上的瞬息万变会产生变化,这既可以看作要防范的威胁,也可以看作应该欢迎的机遇. ...
- *[topcoder]GUMIAndSongsDiv1
http://community.topcoder.com/stat?c=problem_statement&pm=12706&rd=15700 这题有意思.首先要观察到,如果选定一些 ...
- 【转】wireshark过滤规则
WireShark过滤语法 1.过滤IP,如来源IP或者目标IP等于某个IP 例子:ip.src eq 192.168.1.107 or ip.dst eq 192.168.1.107或者ip.add ...
- 【转】PostgreSQL IP地址访问配置
原文:http://blog.csdn.net/shuaiwang/article/details/1793294 1.PostgreSQL的安装目录,进入data文件夹,打开postgresql.c ...
- QGraphicsEffect介绍(十分漂亮)
原文链接:Qt 图形特效(Graphics Effect)介绍 QGraphicsEffect也是Qt-4.6引入的一个新功能.它让给图形元素QGraphicsItem增加更佳视觉效果的编程变得非常简 ...