(1). The numerical radius defines a norm on $\scrL(\scrH)$.

(2). $w(UAU^*)=w(A)$ for all $U\in \U(n)$.

(3). $w(A)\leq \sen{A}\leq 2w(A)$ for all $A$.

(4). $w(A)=\sen{A}$ if (but not only if) $A$ is normal.

Solution.

(1). We only need to show that $$\beex \bea w(A)=0&\ra \sef{x,Ax}=0,\quad \forall\ x:\sen{x}=1\\ &\ra \sef{y,Ax}=\frac{1}{4} \sum_{k=0}^3 i^k\sef{x+i^ky,A(x+i^ky)}=0,\quad\forall\ x,y:\sen{x}=\sen{y}=1\\ &\ra Ax=0,\quad \forall\ x:\sen{x}=1\\ &\ra A=0. \eea \eeex$$

(2). $$\beex \bea w(UAU^*)&=\sup_{\sen{x}=1}\sev{\sef{x,UAU^*}}\\ &=\sup_{\sen{x}=1}\sev{(U^*x)^*A(U^*x)}\\ &=\sup_{\sen{y}=1}\sev{y^*Ay}\quad\sex{y=U^*x}\\ &=w(A). \eea \eeex$$

(3). $$\beex \bea w(A)&=\sup_{\sen{x}=1}\sev{\sef{x,Ax}}\\ &\leq \sup_{\sen{x}=1} \sex{\sen{x}\cdot \sen{Ax}}\\ &=\sup_{\sen{x}=1}\sen{Ax}\\ &=\sen{A};\\ \sen{A}&=\sup_{\sen{x}=\sen{y}=1}\sev{\sef{y,Ax}}\\ &=\sup_{\sen{x}=\sen{y}=1} \sev{\frac{1}{4}\sum_{k=0}^3 i^k\sef{y+i^kx,A(y+i^kx)}}\\ &\leq \sup_{\sen{x}=\sen{y}=1} \frac{1}{4}\sum_{k=0}^3 \sev{\sef{y+i^kx,A(y+i^kx)}}\\ &\leq \sup_{\sen{x}=\sen{y}=1} \frac{1}{4}\sum_{k=0}^3 \sen{y+i^kx}^2\cdot w(A)\\ &=\sup_{\sen{x}=\sen{y}=1} \frac{1}{4}\cdot 4\sex{\sen{x}^2+\sen{y}^2} \cdot w(A)\\ &=2w(A). \eea \eeex$$

(4). If $A$ is normal, then by the spectral theorem, there exists a unitary $U$ such that $$\bex A=U\diag(\lm_1,\cdots,\lm_n)U^*, \eex$$ and hence $$\beex \bea \sen{Ax}^2&=\sef{Ax,Ax}\\ &=x^*A^*Ax\\ &=Ux^*\diag(|\lm_1|^2,\cdots,|\lm_n|^2)U^*x\\ &=\sum_{i=1}^n |\lm_i|^2|y_i|^2\quad\sex{y=U^*x}\\ &\leq \max_i\sen{\lm_i}^2\sen{y}^2\\ &\leq w(A)\sen{x}^2. \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.10的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

随机推荐

  1. git操作技巧(转载)

    转载自:https://segmentfault.com/q/1010000000181403 git支持很多种工作流程,我们采用的一般是这样,远程创建一个主分支,本地每人创建功能分支,日常工作流程如 ...

  2. iOS CoCoa编程中视图控制器与视图类(转)

    分类: iPhone2012-05-28 11:19 837人阅读 评论(0) 收藏 举报 cocoa编程iosuinavigationcontrolleruiviewiphone iPhone编程规 ...

  3. 免费web直接打印的控件PAZU

    PAZU 是4Fang 四方为配合"四方在线"软件于2004年开发的WEB打印控件,适用于各种WEB软件项目的打印.PAZU是客户端软件,使用于IE作为客户端的所有应用,与服务器端 ...

  4. myeclipse报错:Could not create the view: An unexpected exception was thrown.

    打开server窗口,发现显示:Could not create the view: An unexpected exception was thrown. 此处解决方法: 关闭myeclipse 删 ...

  5. c#保留小数点后两位

    double d = 23423.24234234d; Response.Write(d.ToString("0.00"));

  6. WPF 视图分组排序

    视图分组排序 效果: 实现步骤: 第一步:为分组做一个标题头,就是效果图中的浅蓝色部分: <DataGrid.GroupStyle>标签部分: <DataGrid x:Name=&q ...

  7. "Principles of Reactive Programming" 之<Actors are Distributed> (2)

    Actor Path 我们知道actor是有层级的(hierarchical),第.每个actor在它的父actor的名字空间下都有一个名字.这样就构成了一个树状的结构,就像是文件系统.每个actor ...

  8. CSS文件和Javascript文件的压缩

    像JQuery一样来压缩我们的CSS和JS 我们都知道一般JQuery新版本发布的时候往往会有几个不同类型文件,比如原始版本文件.最小文件以及其他配合IDE智能提示的各种版本文件,前期我们使用JQue ...

  9. IsBadReadPtr|IsBadWritePtr调试崩溃

    遇到一未找到必然出现条件的崩溃,不知道什么时候能触发崩溃,崩溃dump显示,试图访问了非法的内存或者写入了非法的内存 此时如下两个函数就比较有用了: BOOL WINAPI IsBadReadPtr( ...

  10. Android 二维码扫描与生成

    由于源代码比较多,本文不进行讲述,请下载源码. 源码来源于网络,请点击这里下载: http://files.cnblogs.com/wuyou/Android%E4%BA%8C%E7%BB%B4%E7 ...