lsj师兄的题解

一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1.

设g(i)为 gcd(x, y) = i ( 1 <= x <= n, 1 <= y <= m ) 的数对(x, y)个数. 这个不好求, 考虑容斥, 设f(i) 为含有公因数 i 的数对(x, y)(1 <= x <= n, 1 <= y <= m)个数 , 显然f(i) = (n / i) * (m / i). 则 g(i) = f(i) - ∑f(i * k) ( k >= 2 , i * k <= min(n, m) ).

然后answer = ∑(g(i) * 2 - 1)

当然用莫比乌斯或者欧拉函数都可以A。。。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define clr(x,c) memset(x,c,sizeof(x))
#define ll long long
ll f[100005];
int main(){
int n,m;scanf("%d%d",&n,&m);
int tmp=min(n,m);
ll ans=0;
dwn(i,tmp,1){
f[i]=(ll)(m/i)*(n/i);
for(int j=i+i;j<=tmp;j+=i) f[i]-=f[j];
ans+=f[i]*(2*i-1);
}
printf("%lld\n",ans);
return 0;
}

  

2005: [Noi2010]能量采集

Time Limit: 10 Sec  Memory Limit: 552 MB
Submit: 3180  Solved: 1888
[Submit][Status][Discuss]

Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,
栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列
有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,
表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了
一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器
连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于
连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植
物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20
棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能
量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】
5 4
【样例输入2】
3 4

Sample Output

【样例输出1】
36
【样例输出2】
20
对于100%的数据:1 ≤ n, m ≤ 100,000。

HINT

 

Source

 

[Submit][Status][Discuss]

bzoj2005: [Noi2010]能量采集的更多相关文章

  1. BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】

    BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...

  2. [BZOJ2005][Noi2010]能量采集 容斥+数论

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4394  Solved: 2624[Submit][Statu ...

  3. BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  4. BZOJ2005: [Noi2010]能量采集(容斥原理 莫比乌斯反演)

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 4727  Solved: 2877[Submit][Status][Discuss] Descript ...

  5. [bzoj2005][Noi2010][能量采集] (容斥 or 欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...

  6. BZOJ2005: [Noi2010]能量采集(欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...

  7. BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛

    分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...

  8. 【莫比乌斯反演】BZOJ2005 [NOI2010]能量采集

    Description 求sigma gcd(x,y)*2-1,1<=x<=n, 1<=y<=m.n, m<=1e5. Solution f(n)为gcd正好是n的(x, ...

  9. [luogu1447][bzoj2005][NOI2010]能量采集

    题目大意 求出\(\sum_{i=1}^{n} \sum_{i=1}^{m} gcd(i,j)\times 2 -1\). 题解 解法还是非常的巧妙的,我们考虑容斥原理.我们定义\(f[i]\)表示\ ...

随机推荐

  1. adb shell 出现 error :

    首先,确保 adb 服务有起来    adb kill-server adb start-server其次,确保 adb devices 可以找到设备

  2. JavaScript string array 数组

    Array类可以如下定义: var aValues = new Array(); 如果预先知道数组的长度,可以用参数传递长度 var aValues = new Array(20); -------- ...

  3. PE文件结构详解(三)PE导出表

    上篇文章 PE文件结构详解(二)可执行文件头 的结尾出现了一个大数组,这个数组中的每一项都是一个特定的结构,通过函数获取数组中的项可以用RtlImageDirectoryEntryToData函数,D ...

  4. HTML5 动画引擎 小记

    国内: Cocos2d-x js版本   layabox Egret Sirius2D lufylegend.js Fireball 国外: CreateJS(EaselJS.TweenJS)http ...

  5. 飞信免费发送接口API的测试 httpClient

    测试飞信免费发送接口API的测试(HTTPClient实现) 使用优点:快捷,方便 使用缺点:用户的各种信息以明文形式在网络中传输不安全. 仅仅用于测试 package cn.com.vnvtrip. ...

  6. POJ 1699 Best Sequence(DFS)

    題目鏈接 題意 : 將幾個片段如圖所示方法縮成一個序列,求出最短這個序列. 思路 : 其實我也不知道怎麼做.....看網上都用了DP.....但是我不會.....這個DP不錯,還有用KMP+状压DP做 ...

  7. Ubuntu Geany中文乱码

    打开Geany,编辑,首选项,文件,选中“使用固定的编码打开非Unicode文件”,缺省编码选择“简体中文GBK)”. 另外,直接把文本文件拖进浏览器也行(前提是你的浏览器使用的是中文,我用的chro ...

  8. stringgird中使用TClientDataSet排序的问题

    function TfrmMain.createIIReport(cdsBody: TClientDataSet;  silent: Boolean): String;var    s,sText: ...

  9. 【nginx运维基础(3)】Nginx的编译PHP

    Apache默认是把PHP作为本身的一个模块(mod_php)来运行的,而Nginx是以FastCGI方式运行的.所以使用Nginx+PHP就是直接配置为FastCGI模式. 安装PHP 下载地址: ...

  10. VS2010/MFC编程入门教程之目录和总结

    鸡啄米的这套VS2010/MFC编程入门教程到此就全部完成了,虽然有些内容还未涉及到,但帮助大家进行VS2010/MFC的入门学习业已足够.以此教程的知识为基础,学习VS2010/MFC较为深入的内容 ...