lsj师兄的题解

一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1.

设g(i)为 gcd(x, y) = i ( 1 <= x <= n, 1 <= y <= m ) 的数对(x, y)个数. 这个不好求, 考虑容斥, 设f(i) 为含有公因数 i 的数对(x, y)(1 <= x <= n, 1 <= y <= m)个数 , 显然f(i) = (n / i) * (m / i). 则 g(i) = f(i) - ∑f(i * k) ( k >= 2 , i * k <= min(n, m) ).

然后answer = ∑(g(i) * 2 - 1)

当然用莫比乌斯或者欧拉函数都可以A。。。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define clr(x,c) memset(x,c,sizeof(x))
#define ll long long
ll f[100005];
int main(){
int n,m;scanf("%d%d",&n,&m);
int tmp=min(n,m);
ll ans=0;
dwn(i,tmp,1){
f[i]=(ll)(m/i)*(n/i);
for(int j=i+i;j<=tmp;j+=i) f[i]-=f[j];
ans+=f[i]*(2*i-1);
}
printf("%lld\n",ans);
return 0;
}

  

2005: [Noi2010]能量采集

Time Limit: 10 Sec  Memory Limit: 552 MB
Submit: 3180  Solved: 1888
[Submit][Status][Discuss]

Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,
栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列
有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,
表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了
一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器
连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于
连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植
物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20
棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能
量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】
5 4
【样例输入2】
3 4

Sample Output

【样例输出1】
36
【样例输出2】
20
对于100%的数据:1 ≤ n, m ≤ 100,000。

HINT

 

Source

 

[Submit][Status][Discuss]

bzoj2005: [Noi2010]能量采集的更多相关文章

  1. BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】

    BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...

  2. [BZOJ2005][Noi2010]能量采集 容斥+数论

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4394  Solved: 2624[Submit][Statu ...

  3. BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  4. BZOJ2005: [Noi2010]能量采集(容斥原理 莫比乌斯反演)

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 4727  Solved: 2877[Submit][Status][Discuss] Descript ...

  5. [bzoj2005][Noi2010][能量采集] (容斥 or 欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...

  6. BZOJ2005: [Noi2010]能量采集(欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...

  7. BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛

    分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...

  8. 【莫比乌斯反演】BZOJ2005 [NOI2010]能量采集

    Description 求sigma gcd(x,y)*2-1,1<=x<=n, 1<=y<=m.n, m<=1e5. Solution f(n)为gcd正好是n的(x, ...

  9. [luogu1447][bzoj2005][NOI2010]能量采集

    题目大意 求出\(\sum_{i=1}^{n} \sum_{i=1}^{m} gcd(i,j)\times 2 -1\). 题解 解法还是非常的巧妙的,我们考虑容斥原理.我们定义\(f[i]\)表示\ ...

随机推荐

  1. 关于cookie的一点知识

    关于cookie的一点知识 1.cookie是存储在客户端计算机中. 2.cookie不能跨浏览器访问.cookie是浏览器保存的,所以不同浏览器对cookie的保存路径.存储数据的格式.文件大小都可 ...

  2. windows android studio 编译Jni动态库

    项目需要,折腾了半天搞定windows android studio环境编译Jni动态库,现记录下来. 准备安装环境: 1. android studio 下载地址是http://www.androi ...

  3. javascript_22_for_二维数组

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  4. Leetcode#78 Subsets

    原题地址 有两种方法: 1. 对于序列S,其子集可以对应为一个二进制数,每一位对应集合中的某个数字,0代表不选,1代表选,比如S={1,2,3},则子集合就是3bit的所有二进制数. 所以,照着二进制 ...

  5. PE文件结构详解(二)可执行文件头

    在PE文件结构详解(一)基本概念里,解释了一些PE文件的一些基本概念,从这篇开始,将详细讲解PE文件中的重要结构. 了解一个文件的格式,最应该首先了解的就是这个文件的文件头的含义,因为几乎所有的文件格 ...

  6. c++中new和delete的使用方法

    c++中new和delete的使用方法 new和delete运算符用于动态分配和撤销内存的运算符 new用法: 1.     开辟单变量地址空间 1)new int;  //开辟一个存放数组的存储空间 ...

  7. MonoBehaviour.StopCoroutine

    MonoBehaviour.StopCoroutine Description Stops all coroutines named methodName running on this behavi ...

  8. HDU 3501 Calculation 2 (欧拉函数)

    题目链接 题意 : 求小于n的数中与n不互质的所有数字之和. 思路 : 欧拉函数求的是小于等于n的数中与n互质的数个数,这个题的话,先把所有的数字之和求出来,再减掉欧拉函数中所有质数之和(即为eula ...

  9. 2013 ACM-ICPC长沙赛区全国邀请赛——A So Easy!

    这题在比赛的时候不知道怎么做,后来看了别人的解题报告,才知道公式sn=(a+sqrt(b))^n+(a-sqrt(b))^n; 具体推导 #include<iostream> #inclu ...

  10. 使用getScript()方法异步加载并执行js文件

    使用getScript()方法异步加载并执行js文件 使用getScript()方法异步请求并执行服务器中的JavaScript格式的文件,它的调用格式如下所示: jQuery.getScript(u ...