单词计数WordCountApp.class
public class WordCountApp {
// 可以指定目录,目录下如果有二级目录的话,是不会执行的,只会执行一级目录.
private static final String INPUT_PATH = "hdfs://hadoop1:9000/abd";// 输入路径
private static final String OUT_PATH = "hdfs://hadoop1:9000/out";// 输出路径,reduce作业输出的结果是一个目录
// _SUCCESS:在linux中,带下划线的这些文件一般都是被忽略不去处理的.表示作业执行成功.
// _logs:产生的日志文件.
// part-r-00000:产生的是我们的输出的文件.开始以part开始.r:reduce输出的结果,map输出的结果是m,00000是序号
public static void main(String[] args) {
Configuration conf = new Configuration();// 配置对象
try {
FileSystem fileSystem = FileSystem.get(new URI(OUT_PATH), conf);
fileSystem.delete(new Path(OUT_PATH), true);
Job job = new Job(conf, WordCountApp.class.getSimpleName());// jobName:作业名称
job.setJarByClass(WordCountApp.class);
FileInputFormat.setInputPaths(job, INPUT_PATH);// 指定数据的输入
job.setMapperClass(MyMapper.class);// 指定自定义map类
job.setMapOutputKeyClass(Text.class);// 指定map输出key的类型
job.setMapOutputValueClass(LongWritable.class);// 指定map输出value的类型
job.setReducerClass(MyReducer.class);// 指定自定义Reduce类
job.setOutputKeyClass(Text.class);// 设置Reduce输出key的类型
job.setOutputValueClass(LongWritable.class);// 设置Reduce输出的value类型
FileOutputFormat.setOutputPath(job, new Path(OUT_PATH));// Reduce输出完之后,就会产生一个最终的输出,指定最终输出的位置
job.waitForCompletion(true);// 提交给jobTracker并等待结束
} catch (Exception e) {
e.printStackTrace();
}
}
/**
* 输入的key标示偏移量:这一行开始的字节. 输入的value:当前的行文本的内容. MapReduce执行过程:
* 在这里边,我们的数据输入来自于原始文件,数据输出写出到hdfs, 中间的一堆都是map输出产生的临时结果.存放在map运行的linux磁盘上的,
* 当经过shuffle时,reduce就会通过http把map端的对应数据给取过来.
* mapred-default.xml中mapredcue.jobtracker
* .root.dir,mapred.tmp.dir存储map产生的结果. 作业运行时产生这个目录,作业运行完之后它会删除目录.
*/
public static class MyMapper extends
Mapper<LongWritable, Text, Text, LongWritable> {
// 源文件有两行记录,解析源文件会产生两个键值对.分别是<0,hello you>,<10,hello me>,所以map函数会被调用两次.
// 在计算机存储的时候,是一维的结构.
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
// 为什么要把hadoop类型转换为java类型?
String line = value.toString();
String[] splited = line.split("\t");
// 使用hashMap写出去的优势:减少键值对出现的个数.
Map<String, Integer> hashMap = new HashMap<String, Integer>();
for (String word : splited) {
// 在for循环体内,临时变量word出现的此时是常量1
context.write(new Text(word), new LongWritable(1));// 把每个单词出现的次数1写出去.
}
}
}
// map函数执行结束后,map输出的<k,v>一共有4个.<hello,1>,<you,1>,<hello,1>,<me,1>
// map把数据处理完之后,就会进入reduce.
// 在进入shuffle之前,数据需要先进行分区.默认只有一个区.
// 对每个不同分区中的数据进行排序,分组.
// 排序后的结果:<hello,1>,<hello,1>,<me,1>,<you,1>
// 分组后的结果(相同key的value放在一个集合中):<hello,{1,1}>,<me,{1}>,<you,{1}>
// 规约(可选)
// map中的数据分发到reduce的过程称作shuffle
public static class MyReducer extends
Reducer<Text, LongWritable, Text, LongWritable> {
// 每一组调用一次reduce函数,一共调用了三次
@Override
protected void reduce(Text key, Iterable<LongWritable> values,
Context context) throws IOException, InterruptedException {
// count标示单词key在整个文件出现的次数
// 分组的数量与reduce函数调用次数是相等的.
// reduce函数调用次数与产生的<k,v>的数量抛开业务,没有任何关系!
long count = 0L;
for (LongWritable times : values) {
count += times.get();
}
context.write(key, new LongWritable(count));
}
}
}
单词计数WordCountApp.class的更多相关文章
- 自定义实现InputFormat、OutputFormat、输出到多个文件目录中去、hadoop1.x api写单词计数的例子、运行时接收命令行参数,代码例子
一:自定义实现InputFormat *数据源来自于内存 *1.InputFormat是用于处理各种数据源的,下面是实现InputFormat,数据源是来自于内存. *1.1 在程序的job.setI ...
- 使用Scala实现Java项目的单词计数:串行及Actor版本
其实我想找一门“具有Python的简洁写法和融合Java平台的优势, 同时又足够有挑战性和灵活性”的编程语言. Scala 就是一个不错的选择. Scala 有很多语言特性, 建议先掌握基础常用的: ...
- MapReduce之单词计数
最近在看google那篇经典的MapReduce论文,中文版可以参考孟岩推荐的 mapreduce 中文版 中文翻译 论文中提到,MapReduce的编程模型就是: 计算利用一个输入key/value ...
- Storm实现单词计数
package com.mengyao.storm; import java.io.File; import java.io.IOException; import java.util.Collect ...
- hadoop笔记之MapReduce的应用案例(WordCount单词计数)
MapReduce的应用案例(WordCount单词计数) MapReduce的应用案例(WordCount单词计数) 1. WordCount单词计数 作用: 计算文件中出现每个单词的频数 输入结果 ...
- 第一章 flex单词计数程序
学习Flex&Bison目标, 读懂SQLite中SQL解析部分代码 Flex&Bison简介Flex做词法分析Bison做语法分析 第一个Flex程序, wc.fl, 单词计数程序 ...
- Strom的trident单词计数代码
/** * 单词计数 */ public class LocalTridentCount { public static class MyBatchSpout implements IBatchSpo ...
- 大数据【四】MapReduce(单词计数;二次排序;计数器;join;分布式缓存)
前言: 根据前面的几篇博客学习,现在可以进行MapReduce学习了.本篇博客首先阐述了MapReduce的概念及使用原理,其次直接从五个实验中实践学习(单词计数,二次排序,计数器,join,分 ...
- python实现指定目录下批量文件的单词计数:并发版本
在 文章 <python实现指定目录下批量文件的单词计数:串行版本>中, 总体思路是: A. 一次性获取指定目录下的所有符合条件的文件 -> B. 一次性获取所有文件的所有文件行 - ...
随机推荐
- nginx的location配置
http://blog.sina.com.cn/s/blog_97688f8e0100zws5.html http://blog.csdn.net/yanook/article/details/100 ...
- 10个最佳的PHP图像操作库
Thomas Boutell 以及众多的开发者创造了以GD图形库闻名的一个图形软件库,用于动态的图形计算. GD提供了对于诸如C, Perl, Python, PHP, OCaml等等诸多编程语言的支 ...
- (三)CSS高级语法
选择器分组 可以对选择器进行分组,被分组的选择器可以分享相同的声明,用逗号将需要分组的选择器分开.例如: h1,h2,h3,h4,h5,h6 { color: green; } 继承以及其问题一般,子 ...
- Android开发之定义app在手机的安装位置
定义app在手机的安装位置,可以通过在清单文件中添加属性 android:installLocation="" 该属性有三个值:auto(自动),preferExternal(外部 ...
- devDependencies和dependencies的区别
我们在使用npm install 安装模块或插件的时候,有两种命令把他们写入到 package.json 文件里面去,比如: --save-dev --save 在 package.json 文件里面 ...
- CSS在不同浏览器兼容问题,margin偏移/offset溢出等
margin在垂直取值时取最大值 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "h ...
- autofac meta
http://kevincuzner.com/2014/05/19/extreme-attributed-metadata-autofac/ http://stackoverflow.com/ques ...
- uva12230Crossing Rivers
数学期望. 过每条河的时间的可能在[L/v,3*L/v]间均匀分布,数学期望为2*L/v. 然后在加上在陆上走的时间. #include<cstdio> #include<algor ...
- [转]ASP.NET 页生命周期概述
原文链接:http://msdn.microsoft.com/zh-cn/library/ms178472(v=vs.110).aspx 对应版本:.NET 4.0 ASP.NET 页运行时,此页将 ...
- vc/mfc获取rgb图像数据后动态显示及保存图片的方法
vc/mfc获取rgb图像数据后动态显示及保存图片的方法 该情况可用于视频通信中获取的位图数据回放显示或显示摄像头捕获的本地图像 第一种方法 #include<vfw.h> 加载 vfw3 ...