public class WordCountApp {
// 可以指定目录,目录下如果有二级目录的话,是不会执行的,只会执行一级目录.
private static final String INPUT_PATH = "hdfs://hadoop1:9000/abd";// 输入路径
private static final String OUT_PATH = "hdfs://hadoop1:9000/out";// 输出路径,reduce作业输出的结果是一个目录
// _SUCCESS:在linux中,带下划线的这些文件一般都是被忽略不去处理的.表示作业执行成功.
// _logs:产生的日志文件.
// part-r-00000:产生的是我们的输出的文件.开始以part开始.r:reduce输出的结果,map输出的结果是m,00000是序号
public static void main(String[] args) {
Configuration conf = new Configuration();// 配置对象
try {
FileSystem fileSystem = FileSystem.get(new URI(OUT_PATH), conf);
fileSystem.delete(new Path(OUT_PATH), true);
Job job = new Job(conf, WordCountApp.class.getSimpleName());// jobName:作业名称
job.setJarByClass(WordCountApp.class);
FileInputFormat.setInputPaths(job, INPUT_PATH);// 指定数据的输入
job.setMapperClass(MyMapper.class);// 指定自定义map类
job.setMapOutputKeyClass(Text.class);// 指定map输出key的类型
job.setMapOutputValueClass(LongWritable.class);// 指定map输出value的类型
job.setReducerClass(MyReducer.class);// 指定自定义Reduce类
job.setOutputKeyClass(Text.class);// 设置Reduce输出key的类型
job.setOutputValueClass(LongWritable.class);// 设置Reduce输出的value类型
FileOutputFormat.setOutputPath(job, new Path(OUT_PATH));// Reduce输出完之后,就会产生一个最终的输出,指定最终输出的位置
job.waitForCompletion(true);// 提交给jobTracker并等待结束
} catch (Exception e) {
e.printStackTrace();
}
} /**
* 输入的key标示偏移量:这一行开始的字节. 输入的value:当前的行文本的内容. MapReduce执行过程:
* 在这里边,我们的数据输入来自于原始文件,数据输出写出到hdfs, 中间的一堆都是map输出产生的临时结果.存放在map运行的linux磁盘上的,
* 当经过shuffle时,reduce就会通过http把map端的对应数据给取过来.
* mapred-default.xml中mapredcue.jobtracker
* .root.dir,mapred.tmp.dir存储map产生的结果. 作业运行时产生这个目录,作业运行完之后它会删除目录.
*/
public static class MyMapper extends
Mapper<LongWritable, Text, Text, LongWritable> {
// 源文件有两行记录,解析源文件会产生两个键值对.分别是<0,hello you>,<10,hello me>,所以map函数会被调用两次.
// 在计算机存储的时候,是一维的结构.
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
// 为什么要把hadoop类型转换为java类型?
String line = value.toString();
String[] splited = line.split("\t");
// 使用hashMap写出去的优势:减少键值对出现的个数.
Map<String, Integer> hashMap = new HashMap<String, Integer>(); for (String word : splited) {
// 在for循环体内,临时变量word出现的此时是常量1
context.write(new Text(word), new LongWritable(1));// 把每个单词出现的次数1写出去.
}
}
} // map函数执行结束后,map输出的<k,v>一共有4个.<hello,1>,<you,1>,<hello,1>,<me,1>
// map把数据处理完之后,就会进入reduce.
// 在进入shuffle之前,数据需要先进行分区.默认只有一个区.
// 对每个不同分区中的数据进行排序,分组.
// 排序后的结果:<hello,1>,<hello,1>,<me,1>,<you,1>
// 分组后的结果(相同key的value放在一个集合中):<hello,{1,1}>,<me,{1}>,<you,{1}>
// 规约(可选) // map中的数据分发到reduce的过程称作shuffle
public static class MyReducer extends
Reducer<Text, LongWritable, Text, LongWritable> {
// 每一组调用一次reduce函数,一共调用了三次
@Override
protected void reduce(Text key, Iterable<LongWritable> values,
Context context) throws IOException, InterruptedException {
// count标示单词key在整个文件出现的次数
// 分组的数量与reduce函数调用次数是相等的.
// reduce函数调用次数与产生的<k,v>的数量抛开业务,没有任何关系!
long count = 0L;
for (LongWritable times : values) {
count += times.get();
}
context.write(key, new LongWritable(count));
}
}
}

单词计数WordCountApp.class的更多相关文章

  1. 自定义实现InputFormat、OutputFormat、输出到多个文件目录中去、hadoop1.x api写单词计数的例子、运行时接收命令行参数,代码例子

    一:自定义实现InputFormat *数据源来自于内存 *1.InputFormat是用于处理各种数据源的,下面是实现InputFormat,数据源是来自于内存. *1.1 在程序的job.setI ...

  2. 使用Scala实现Java项目的单词计数:串行及Actor版本

    其实我想找一门“具有Python的简洁写法和融合Java平台的优势, 同时又足够有挑战性和灵活性”的编程语言. Scala 就是一个不错的选择. Scala 有很多语言特性, 建议先掌握基础常用的: ...

  3. MapReduce之单词计数

    最近在看google那篇经典的MapReduce论文,中文版可以参考孟岩推荐的 mapreduce 中文版 中文翻译 论文中提到,MapReduce的编程模型就是: 计算利用一个输入key/value ...

  4. Storm实现单词计数

    package com.mengyao.storm; import java.io.File; import java.io.IOException; import java.util.Collect ...

  5. hadoop笔记之MapReduce的应用案例(WordCount单词计数)

    MapReduce的应用案例(WordCount单词计数) MapReduce的应用案例(WordCount单词计数) 1. WordCount单词计数 作用: 计算文件中出现每个单词的频数 输入结果 ...

  6. 第一章 flex单词计数程序

    学习Flex&Bison目标, 读懂SQLite中SQL解析部分代码 Flex&Bison简介Flex做词法分析Bison做语法分析 第一个Flex程序, wc.fl, 单词计数程序 ...

  7. Strom的trident单词计数代码

    /** * 单词计数 */ public class LocalTridentCount { public static class MyBatchSpout implements IBatchSpo ...

  8. 大数据【四】MapReduce(单词计数;二次排序;计数器;join;分布式缓存)

       前言: 根据前面的几篇博客学习,现在可以进行MapReduce学习了.本篇博客首先阐述了MapReduce的概念及使用原理,其次直接从五个实验中实践学习(单词计数,二次排序,计数器,join,分 ...

  9. python实现指定目录下批量文件的单词计数:并发版本

    在 文章 <python实现指定目录下批量文件的单词计数:串行版本>中, 总体思路是: A. 一次性获取指定目录下的所有符合条件的文件 -> B. 一次性获取所有文件的所有文件行 - ...

随机推荐

  1. hadoop拾遗(二)---- 文件模式

    在单个操作中处理一批文件,这是一个常见的要求.举例来说,处理日志的MapReduce作业可能需要分析一个月内包含在大量目录中的日志文件.在一个表达式中使用通配符来匹配多个文件是比较方便的,无需列举第个 ...

  2. HDU 3038 How Many Answers Are Wrong 并查集带权路径压缩

    思路跟 LA 6187 完全一样. 我是乍一看没反应过来这是个并查集,知道之后就好做了. d[i]代表节点 i 到根节点的距离,即每次的sum. #include <cstdio> #in ...

  3. SQL延时操作

    --使用waitfor语句延迟或暂停程序的执行 --waitfor{delay'time'|time 'time'} delay是指间隔时间 最长到24小时 time是指定时间执行 waitfor d ...

  4. hive 学习笔记——表的入门操作和命令

    1.受控表(managed table)包括内部表.分区表.桶表: 1.1.分区表 创建分区表: create table banji(id INT,name STRING) partitioned ...

  5. WebActivatorEx

    using System; using NLog; using System.Web.Optimization; [assembly: WebActivatorEx.PreApplicationSta ...

  6. EF之MSSQL分布式部署一:EFContext自定义数据库链接

    不废话,上代码: 来源:http://bbs.csdn.net/topics/390823046 原文地址:EF之MSSQL分布式部署一:EFContext自定义数据库链接   /// <sum ...

  7. UVa 12063 (DP) Zeros and Ones

    题意: 找出长度为n.0和1个数相等.没有前导0且为k的倍数的二进制数的个数. 分析: 这道题要用动态规划来做. 设dp(zeros, ones, mod)为有zeros个0,ones个1,除以k的余 ...

  8. css实现超出一行后用省略号显示

    css实现超出一行后用省略号显示 a{display:inline-block; text-overflow:ellipsis; white-space:nowrap; overflow:hidden ...

  9. Jqgrid入门-结合Struts2+json实现数据展示(五)

    DEMO用的是ssh框架实现的,具体怎么搭建的就不多做说明了.分页表格的数据操作难点就是数据展现.至于增删改直接用hibernate原生的方法实现即可.         初步分析:表格要实现分页,那么 ...

  10. 从客户端中检测到有潜在危险的 Request.Form 值-解决方案

    环境:VS2010 1.页头上加上ValidateRequest="false" <%@ Page Language="C#" ValidateReque ...