POJ 1584:A Round Peg in a Ground Hole
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 5741 | Accepted: 1842 |
Description
so are intended to fit inside a round hole.
A recent factory run of computer desks were flawed when an automatic grinding machine was mis-programmed. The result is an irregularly shaped hole in one piece that, instead of the expected circular shape, is actually an irregular polygon. You need to figure
out whether the desks need to be scrapped or if they can be salvaged by filling a part of the hole with a mixture of wood shavings and glue.
There are two concerns. First, if the hole contains any protrusions (i.e., if there exist any two interior points in the hole that, if connected by a line segment, that segment would cross one or more edges of the hole), then the filled-in-hole would not be
structurally sound enough to support the peg under normal stress as the furniture is used. Second, assuming the hole is appropriately shaped, it must be big enough to allow insertion of the peg. Since the hole in this piece of wood must match up with a corresponding
hole in other pieces, the precise location where the peg must fit is known.
Write a program to accept descriptions of pegs and polygonal holes and determine if the hole is ill-formed and, if not, whether the peg will fit at the desired location. Each hole is described as a polygon with vertices (x1, y1), (x2, y2), . . . , (xn, yn).
The edges of the polygon are (xi, yi) to (xi+1, yi+1) for i = 1 . . . n − 1 and (xn, yn) to (x1, y1).
Input
Line 1 < nVertices > < pegRadius > < pegX > < pegY >
number of vertices in polygon, n (integer)
radius of peg (real)
X and Y position of peg (real)
n Lines < vertexX > < vertexY >
On a line for each vertex, listed in order, the X and Y position of vertex The end of input is indicated by a number of polygon vertices less than 3.
Output
HOLE IS ILL-FORMED if the hole contains protrusions
PEG WILL FIT if the hole contains no protrusions and the peg fits in the hole at the indicated position
PEG WILL NOT FIT if the hole contains no protrusions but the peg will not fit in the hole at the indicated position
Sample Input
5 1.5 1.5 2.0
1.0 1.0
2.0 2.0
1.75 2.0
1.0 3.0
0.0 2.0
5 1.5 1.5 2.0
1.0 1.0
2.0 2.0
1.75 2.5
1.0 3.0
0.0 2.0
1
Sample Output
HOLE IS ILL-FORMED
PEG WILL NOT FIT
题意是按照一定顺序(顺时针或是逆时针)给定一些点,问这些点组成的图形是不是凸包。如果不是,输出“HOLE IS ILL-FORMED”。如果是,又有一个圆,问该圆是否在凸包里面。在里面,输出“PEG WILL FIT”。不在里面,输出“PEG WILL NOT FIT”。
自己对于输入过来的点,就看输入过来的点 叉积 是不是一直大于零,或是一直小于零。
然后对于圆心是不是在凸包里面,我的判断方法是计算面积。如果以圆心、凸包上的两个点为三条形的面积总和与凸包的总面积相等,那这个点一定在凸包里面。否则就在外面。
至于半径那部分,就是计算点到直线的距离,判断与半径之间的关系。
折磨了我整整一个上午。。。
代码:
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#pragma warning(disable:4996)
using namespace std; struct no
{
double x, y;
}node[2005], peg, orign; int n;
double peg_r; double dis(no n1, no n2)
{
if (n1.x == n2.x)
{
return fabs(n1.x - peg.x);
}
else
{
double k = (n2.y - n1.y) / (n2.x - n1.x);
double b = n2.y - k*n2.x;
return fabs(k*peg.x - peg.y + b) / sqrt(k*k + 1);
}
} double xmult(double x1, double y1, double x2, double y2)
{
return x1*y2 - x2*y1;
} double Across(no n1, no n2, no n3, no n4)
{
return xmult(n2.x - n1.x, n2.y - n1.y, n4.x - n3.x, n4.y - n3.y);
} bool convex()
{
int i;
double res, sign = 0;
for (i = 0; i < n; i++)
{
res = Across(node[i%n], node[(i + 1) % n], node[(i + 1) % n], node[(i + 2) % n]);
if (sign == 0)
{
sign = res;
}
else if (sign > 0)
{
if (res < 0)
return true;
}
else if (sign < 0)
{
if (res > 0)
return true;
}
}
return false; } int main()
{
int i, pos_x;
double min_x; while (cin >> n)
{
if (n < 3)
break;
cin >> peg_r >> peg.x >> peg.y;
min_x = 100005; for (i = 0; i < n; i++)
{
cin >> node[i].x >> node[i].y;
if (node[i].x < min_x)
{
min_x = node[i].x;
pos_x = i;
}
else if (min_x == node[i].x&&node[i].y < node[pos_x].y)
{
pos_x = i;
}
}
orign = node[pos_x]; if (convex())
{
cout << "HOLE IS ILL-FORMED" << endl;
}
else
{
int sign = 1;
double sum1 = 0;
for (i = 0; i<n; ++i)
{
sum1 += fabs(((node[i%n].x - node[1].x) * (node[(i + 1) % n].y - node[1].y) - (node[i%n].y - node[1].y) * (node[(i + 1) % n].x - node[1].x)));
} double sum2 = 0; for (i = 0; i < n; ++i)
{
sum2 += fabs(((node[i%n].x - peg.x) * (node[(i + 1) % n].y - peg.y) - (node[i%n].y - peg.y) * (node[(i + 1) % n].x - peg.x)));
} if (sum1 == sum2)
{
sign = 0;
} if (sign == 1)
{
cout << "PEG WILL NOT FIT" << endl;
}
else
{
double len;
sign = 0;
for (i = 0; i < n; i++)
{
len = dis(node[i%n], node[(i + 1) % n]);
if (len < peg_r)
{
sign = 1;
break;
}
}
if (sign == 1)
{
cout << "PEG WILL NOT FIT" << endl;
}
else
{
cout << "PEG WILL FIT" << endl;
}
}
}
} return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
POJ 1584:A Round Peg in a Ground Hole的更多相关文章
- POJ 1584 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】
链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- POJ 1584 A Round Peg in a Ground Hole 判断凸多边形 点到线段距离 点在多边形内
首先判断是不是凸多边形 然后判断圆是否在凸多边形内 不知道给出的点是顺时针还是逆时针,所以用判断是否在多边形内的模板,不用是否在凸多边形内的模板 POJ 1584 A Round Peg in a G ...
- A Round Peg in a Ground Hole(凸包应用POJ 1584)
A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5684 Accepte ...
- POJ 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)
A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4438 Acc ...
- POJ 1584 A Round Peg in a Ground Hole 判断凸多边形,判断点在凸多边形内
A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5456 Acc ...
- POJ 1584 A Round Peg in a Ground Hole[判断凸包 点在多边形内]
A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6682 Acc ...
- POJ 1518 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】
链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- A Round Peg in a Ground Hole(判断是否是凸包,点是否在凸包内,圆与多边形的关系)
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4628 Accepted: 1434 Description The D ...
- poj1584 A round peg in a ground hole【计算几何】
含[判断凸包],[判断点在多边形内],[判断圆在多边形内]模板 凸包:即凸多边形 用不严谨的话来讲,给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边形,它能包含点集中所有的点. The ...
随机推荐
- bootstrap选项卡页面中如何关闭当前选项卡及页面
再具体说一下现在的需求: 如上界面:在新闻发布界面有一个按钮,在点击按钮的时候我需要直接把这个打开的选项卡关闭 实现思路: 1)关闭选项卡对应的页面 2)去除上方选项卡 3)激活前一 ...
- 常用命令提示符(cmd)
MS-DOS(Microsoft Disk Operation System)命令提示符(cmd) 启动: win+ R 输入cmd回车切换盘符 盘符名称:进入文件夹 cd 文件夹名称进入多级 ...
- 开通博客第一天 写一个hello world
申请的博客第一天便被批准了,有了一个和大家交流学习的园地.在今后的日子里期待一起进步.
- Mysql数据库日志,备份及回滚操作
一.打开二进制日志配置 : 在Windows系统下,对mysql的my.ini的log-bin等进行配置目录位置时,假设要将log-bin的日志配置到D盘的mysqllog的文件为binlog.则可以 ...
- POI 2001 Goldmine 线段树 扫描线
题目链接 http://www.acm.cs.ecnu.edu.cn/problem.php?problemid=1350 http://main.edu.pl/en/archive/oi/8/kop ...
- USACO[19-20]Dec银组题解
1,MooBuzz 这题其实是道数学题. 我们先找找符合要求的数:1,2,4,7,8,11,13,14…… 我们发现再往后找都是这8个数中的一个加15k如:16……19……29…… 找规律发现k=n/ ...
- 怎样快速高效的定义Django的序列化器
1.使用Serializer方法自己创建一个序列化器 先写一个简单的例子 class BookInfoSerializer(serializers.Serializer): ""& ...
- 外网如何访问 Service?【转】
除了 Cluster 内部可以访问 Service,很多情况我们也希望应用的 Service 能够暴露给 Cluster 外部.Kubernetes 提供了多种类型的 Service,默认是 Clus ...
- OBS Studio 24.0 RC1 发布 – 有大惊喜
导读 对于那些使用OBS Studio进行跨平台直播和屏幕录制需求的人来说,OBS Studio 24.0即将推出,但首先发布的是他们的候选版本,以审查进入这一重大更新的新功能. OBS Studio ...
- Day8 - G - Bound Found ZOJ - 1964
Signals of most probably extra-terrestrial origin have been received and digitalized by The Aeronaut ...