A Round Peg in a Ground Hole
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 5741   Accepted: 1842

Description

The DIY Furniture company specializes in assemble-it-yourself furniture kits. Typically, the pieces of wood are attached to one another using a wooden peg that fits into pre-cut holes in each piece to be attached. The pegs have a circular cross-section and
so are intended to fit inside a round hole. 

A recent factory run of computer desks were flawed when an automatic grinding machine was mis-programmed. The result is an irregularly shaped hole in one piece that, instead of the expected circular shape, is actually an irregular polygon. You need to figure
out whether the desks need to be scrapped or if they can be salvaged by filling a part of the hole with a mixture of wood shavings and glue. 

There are two concerns. First, if the hole contains any protrusions (i.e., if there exist any two interior points in the hole that, if connected by a line segment, that segment would cross one or more edges of the hole), then the filled-in-hole would not be
structurally sound enough to support the peg under normal stress as the furniture is used. Second, assuming the hole is appropriately shaped, it must be big enough to allow insertion of the peg. Since the hole in this piece of wood must match up with a corresponding
hole in other pieces, the precise location where the peg must fit is known. 

Write a program to accept descriptions of pegs and polygonal holes and determine if the hole is ill-formed and, if not, whether the peg will fit at the desired location. Each hole is described as a polygon with vertices (x1, y1), (x2, y2), . . . , (xn, yn).
The edges of the polygon are (xi, yi) to (xi+1, yi+1) for i = 1 . . . n − 1 and (xn, yn) to (x1, y1).

Input

Input consists of a series of piece descriptions. Each piece description consists of the following data: 

Line 1 < nVertices > < pegRadius > < pegX > < pegY > 

number of vertices in polygon, n (integer) 

radius of peg (real) 

X and Y position of peg (real) 

n Lines < vertexX > < vertexY > 

On a line for each vertex, listed in order, the X and Y position of vertex The end of input is indicated by a number of polygon vertices less than 3.

Output

For each piece description, print a single line containing the string: 

HOLE IS ILL-FORMED if the hole contains protrusions 

PEG WILL FIT if the hole contains no protrusions and the peg fits in the hole at the indicated position 

PEG WILL NOT FIT if the hole contains no protrusions but the peg will not fit in the hole at the indicated position

Sample Input

5 1.5 1.5 2.0
1.0 1.0
2.0 2.0
1.75 2.0
1.0 3.0
0.0 2.0
5 1.5 1.5 2.0
1.0 1.0
2.0 2.0
1.75 2.5
1.0 3.0
0.0 2.0
1

Sample Output

HOLE IS ILL-FORMED
PEG WILL NOT FIT

题意是按照一定顺序(顺时针或是逆时针)给定一些点,问这些点组成的图形是不是凸包。如果不是,输出“HOLE IS ILL-FORMED”。如果是,又有一个圆,问该圆是否在凸包里面。在里面,输出“PEG WILL FIT”。不在里面,输出“PEG WILL NOT FIT”。

自己对于输入过来的点,就看输入过来的点 叉积 是不是一直大于零,或是一直小于零。

然后对于圆心是不是在凸包里面,我的判断方法是计算面积。如果以圆心、凸包上的两个点为三条形的面积总和与凸包的总面积相等,那这个点一定在凸包里面。否则就在外面。

至于半径那部分,就是计算点到直线的距离,判断与半径之间的关系。

折磨了我整整一个上午。。。

代码:

#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#pragma warning(disable:4996)
using namespace std; struct no
{
double x, y;
}node[2005], peg, orign; int n;
double peg_r; double dis(no n1, no n2)
{
if (n1.x == n2.x)
{
return fabs(n1.x - peg.x);
}
else
{
double k = (n2.y - n1.y) / (n2.x - n1.x);
double b = n2.y - k*n2.x;
return fabs(k*peg.x - peg.y + b) / sqrt(k*k + 1);
}
} double xmult(double x1, double y1, double x2, double y2)
{
return x1*y2 - x2*y1;
} double Across(no n1, no n2, no n3, no n4)
{
return xmult(n2.x - n1.x, n2.y - n1.y, n4.x - n3.x, n4.y - n3.y);
} bool convex()
{
int i;
double res, sign = 0;
for (i = 0; i < n; i++)
{
res = Across(node[i%n], node[(i + 1) % n], node[(i + 1) % n], node[(i + 2) % n]);
if (sign == 0)
{
sign = res;
}
else if (sign > 0)
{
if (res < 0)
return true;
}
else if (sign < 0)
{
if (res > 0)
return true;
}
}
return false; } int main()
{
int i, pos_x;
double min_x; while (cin >> n)
{
if (n < 3)
break;
cin >> peg_r >> peg.x >> peg.y;
min_x = 100005; for (i = 0; i < n; i++)
{
cin >> node[i].x >> node[i].y;
if (node[i].x < min_x)
{
min_x = node[i].x;
pos_x = i;
}
else if (min_x == node[i].x&&node[i].y < node[pos_x].y)
{
pos_x = i;
}
}
orign = node[pos_x]; if (convex())
{
cout << "HOLE IS ILL-FORMED" << endl;
}
else
{
int sign = 1;
double sum1 = 0;
for (i = 0; i<n; ++i)
{
sum1 += fabs(((node[i%n].x - node[1].x) * (node[(i + 1) % n].y - node[1].y) - (node[i%n].y - node[1].y) * (node[(i + 1) % n].x - node[1].x)));
} double sum2 = 0; for (i = 0; i < n; ++i)
{
sum2 += fabs(((node[i%n].x - peg.x) * (node[(i + 1) % n].y - peg.y) - (node[i%n].y - peg.y) * (node[(i + 1) % n].x - peg.x)));
} if (sum1 == sum2)
{
sign = 0;
} if (sign == 1)
{
cout << "PEG WILL NOT FIT" << endl;
}
else
{
double len;
sign = 0;
for (i = 0; i < n; i++)
{
len = dis(node[i%n], node[(i + 1) % n]);
if (len < peg_r)
{
sign = 1;
break;
}
}
if (sign == 1)
{
cout << "PEG WILL NOT FIT" << endl;
}
else
{
cout << "PEG WILL FIT" << endl;
}
}
}
} return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ 1584:A Round Peg in a Ground Hole的更多相关文章

  1. POJ 1584 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】

    链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  2. POJ 1584 A Round Peg in a Ground Hole 判断凸多边形 点到线段距离 点在多边形内

    首先判断是不是凸多边形 然后判断圆是否在凸多边形内 不知道给出的点是顺时针还是逆时针,所以用判断是否在多边形内的模板,不用是否在凸多边形内的模板 POJ 1584 A Round Peg in a G ...

  3. A Round Peg in a Ground Hole(凸包应用POJ 1584)

    A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5684 Accepte ...

  4. POJ 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4438   Acc ...

  5. POJ 1584 A Round Peg in a Ground Hole 判断凸多边形,判断点在凸多边形内

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5456   Acc ...

  6. POJ 1584 A Round Peg in a Ground Hole[判断凸包 点在多边形内]

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6682   Acc ...

  7. POJ 1518 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】

    链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  8. A Round Peg in a Ground Hole(判断是否是凸包,点是否在凸包内,圆与多边形的关系)

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4628   Accepted: 1434 Description The D ...

  9. poj1584 A round peg in a ground hole【计算几何】

    含[判断凸包],[判断点在多边形内],[判断圆在多边形内]模板  凸包:即凸多边形 用不严谨的话来讲,给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边形,它能包含点集中所有的点. The ...

随机推荐

  1. Kubernetes——滚动更新和数据管理

    k8s——滚动更新滚动更新就是一次只更新一小部分副本,更新成功之后再更新更多的副本,最终完成所有副本的更新.滚动更新最大的好处是零停机,整个更新的过程中始终有副本运行,从而保证了业务的连续性.kube ...

  2. luogu P2756 飞行员配对方案问题(Dinic板子)

    建立一个超级源点,将每个外籍飞行员连一条capacity为1的路,一个超级汇点,每个英国飞行员也连一条capacity为1的路,根据读入在英国飞行员和外籍飞行员连接capacity为1的路,匹配方案就 ...

  3. Flask与Django哪个更好更实用呢?砖家是这么认为的

        这一周我打算做一个 Flask 教程.本文先把 Flask 和 Django 做一个比对,因为我对这两个 Python Web 框架都有实际的开发经验.希望我可以帮助您选择学习哪个框架,因为学 ...

  4. [Struts]Token 使用及原理

      Struts Token 使用 1,先在一个Action中,调用saveToken(HttpServletRequest request)方法.然后转向带有表单的JSP页面. 2,在JSP页面提交 ...

  5. Spring boot PageHelper.startPage(pageIndex, pageSize)分页无效

    H5页面在测试列表的时候发现分页好像没有起到作用 看了一下后台也没有问题哈: 1.PageHelper.startPage(pageIndex, pageSize)要放在要分页的上面,也没错 2.查询 ...

  6. vs2010编译C++ 结构体

    //结构体的测试// CTest.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> usi ...

  7. 变相降价的iPhone,能挽救苹果在中国的命运吗?

    人无千日好,花无百样红.当年iPhone的横空出世不仅开辟了智能手机时代,还间接导致了诺基亚.黑莓等手机品牌的没落.十余年来,苹果凭借iPhone活得风光无限,并成为全球首个市值超万亿美元的公司.但进 ...

  8. sourcetree的安装

    参考博文: SourceTree安装教程和GitLab配置详解 关于Atlassian无法注册的问题 SourceTree跳过Atlassian账号,免登陆,跳过初始设置 sourcetree跳过注册 ...

  9. 001.CI4框架CodeIgniter的默认访问路径url

    1. 我们解压缩CI4的压缩包,找到app目录,点开Controllers目录,在Home.php文件中,写入我们的如下代码: 002.我们来访问我们的网站 http://127.0.0.1/CI4/ ...

  10. Spark 资料整理

    http://jerryshao.me/architecture/2013/10/08/spark-storage-module-analysis/ http://blog.csdn.net/aliv ...