Pytorch实现MNIST手写数字识别

Pytorch是热门的深度学习框架之一,通过经典的MNIST 数据集进行快速的pytorch入门。
导入库
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor, Compose, Normalize
from torch.utils.data import DataLoader
import torch
import torch.nn.functional as F
import torch.nn as nn
import os
import numpy as np
准备数据集
path = './data'
# 使用Compose 将tensor化和正则化操作打包
transform_fn = Compose([
ToTensor(),
Normalize(mean=(0.1307,), std=(0.3081,))
])
mnist_dataset = MNIST(root=path, train=True, transform=transform_fn)
data_loader = torch.utils.data.DataLoader(dataset=mnist_dataset, batch_size=2, shuffle=True)
# 1. 构建函数,数据集预处理
BATCH_SIZE = 128
TEST_BATCH_SIZE = 1000
def get_dataloader(train=True, batch_size=BATCH_SIZE):
'''
train=True, 获取训练集
train=False 获取测试集
'''
transform_fn = Compose([
ToTensor(),
Normalize(mean=(0.1307,), std=(0.3081,))
])
dataset = MNIST(root='./data', train=train, transform=transform_fn)
data_loader = DataLoader(dataset=dataset, batch_size=BATCH_SIZE, shuffle=True)
return data_loader
构建模型
class MnistModel(nn.Module):
def __init__(self):
super().__init__() # 继承父类
self.fc1 = nn.Linear(1*28*28, 28) # 添加全连接层
self.fc2 = nn.Linear(28, 10)
def forward(self, input):
x = input.view(-1, 1*28*28)
x = self.fc1(x)
x = F.relu(x)
out = self.fc2(x)
return F.log_softmax(out, dim=-1) # log_softmax 与 nll_loss合用,计算交叉熵
模型训练
mnist_model = MnistModel()
optimizer = torch.optim.Adam(params=mnist_model.parameters(), lr=0.001)
# 如果有模型则加载
if os.path.exists('./model'):
mnist_model.load_state_dict(torch.load('model/mnist_model.pkl'))
optimizer.load_state_dict(torch.load('model/optimizer.pkl'))
def train(epoch):
data_loader = get_dataloader()
for index, (data, target) in enumerate(data_loader):
optimizer.zero_grad() # 梯度先清零
output = mnist_model(data)
loss = F.nll_loss(output, target)
loss.backward() # 误差反向传播计算
optimizer.step() # 更新梯度
if index % 100 == 0:
# 保存训练模型
torch.save(mnist_model.state_dict(), 'model/mnist_model.pkl')
torch.save(optimizer.state_dict(), 'model/optimizer.pkl')
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, index * len(data), len(data_loader.dataset),
100. * index / len(data_loader), loss.item()))
for i in range(epoch=5):
train(i)
Train Epoch: 0 [0/60000 (0%)] Loss: 0.023078
Train Epoch: 0 [12800/60000 (21%)] Loss: 0.019347
Train Epoch: 0 [25600/60000 (43%)] Loss: 0.105870
Train Epoch: 0 [38400/60000 (64%)] Loss: 0.050866
Train Epoch: 0 [51200/60000 (85%)] Loss: 0.097995
Train Epoch: 1 [0/60000 (0%)] Loss: 0.108337
Train Epoch: 1 [12800/60000 (21%)] Loss: 0.071196
Train Epoch: 1 [25600/60000 (43%)] Loss: 0.022856
Train Epoch: 1 [38400/60000 (64%)] Loss: 0.028392
Train Epoch: 1 [51200/60000 (85%)] Loss: 0.070508
Train Epoch: 2 [0/60000 (0%)] Loss: 0.037416
Train Epoch: 2 [12800/60000 (21%)] Loss: 0.075977
Train Epoch: 2 [25600/60000 (43%)] Loss: 0.024356
Train Epoch: 2 [38400/60000 (64%)] Loss: 0.042203
Train Epoch: 2 [51200/60000 (85%)] Loss: 0.020883
Train Epoch: 3 [0/60000 (0%)] Loss: 0.023487
Train Epoch: 3 [12800/60000 (21%)] Loss: 0.024403
Train Epoch: 3 [25600/60000 (43%)] Loss: 0.073619
Train Epoch: 3 [38400/60000 (64%)] Loss: 0.074042
Train Epoch: 3 [51200/60000 (85%)] Loss: 0.036283
Train Epoch: 4 [0/60000 (0%)] Loss: 0.021305
Train Epoch: 4 [12800/60000 (21%)] Loss: 0.062750
Train Epoch: 4 [25600/60000 (43%)] Loss: 0.016911
Train Epoch: 4 [38400/60000 (64%)] Loss: 0.039599
Train Epoch: 4 [51200/60000 (85%)] Loss: 0.026689
模型测试
def test():
loss_list = []
acc_list = []
test_loader = get_dataloader(train=False, batch_size = TEST_BATCH_SIZE)
mnist_model.eval() # 设为评估模式
for index, (data, target) in enumerate(test_loader):
with torch.no_grad():
out = mnist_model(data)
loss = F.nll_loss(out, target)
loss_list.append(loss)
pred = out.data.max(1)[1]
acc = pred.eq(target).float().mean() # eq()函数用于将两个tensor中的元素对比,返回布尔值
acc_list.append(acc)
print('平均准确率, 平均损失', np.mean(acc_list), np.mean(loss_list))
test()
平均准确率, 平均损失 0.9662777 0.12309619
Pytorch实现MNIST手写数字识别的更多相关文章
- Pytorch入门——手把手教你MNIST手写数字识别
MNIST手写数字识别教程 要开始带组内的小朋友了,特意出一个Pytorch教程来指导一下 [!] 这里是实战教程,默认读者已经学会了部分深度学习原理,若有不懂的地方可以先停下来查查资料 目录 MNI ...
- mnist手写数字识别——深度学习入门项目(tensorflow+keras+Sequential模型)
前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型 ...
- Android+TensorFlow+CNN+MNIST 手写数字识别实现
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...
- 深度学习之 mnist 手写数字识别
深度学习之 mnist 手写数字识别 开始学习深度学习,先来一个手写数字的程序 import numpy as np import os import codecs import torch from ...
- 基于tensorflow的MNIST手写数字识别(二)--入门篇
http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...
- 第三节,CNN案例-mnist手写数字识别
卷积:神经网络不再是对每个像素做处理,而是对一小块区域的处理,这种做法加强了图像信息的连续性,使得神经网络看到的是一个图像,而非一个点,同时也加深了神经网络对图像的理解,卷积神经网络有一个批量过滤器, ...
- mnist 手写数字识别
mnist 手写数字识别三大步骤 1.定义分类模型2.训练模型3.评价模型 import tensorflow as tfimport input_datamnist = input_data.rea ...
- 持久化的基于L2正则化和平均滑动模型的MNIST手写数字识别模型
持久化的基于L2正则化和平均滑动模型的MNIST手写数字识别模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献Tensorflow实战Google深度学习框架 实验平台: Tens ...
- 用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别
用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别 http://phunter.farbox.com/post/mxnet-tutorial1 用MXnet实战深度学 ...
随机推荐
- Python字符串及基本操作(入门必看)
基础入门的知识一直没有更新完,今天小张接着给大家带来入门级的字符串的常用操作.本文适合刚入门的小白,大佬们请绕过. 一.定义 字符串的意思就是“一串字符”,比如“Hello,Charlie”是一个字符 ...
- NLP interview
2019-08-26 17:19:58 1)聊实习项目 2)代码题,二维数组中的查找某个target 3)讲一些最能体现创新能力的工作,而不是一些工程上的实现 4)讲论文可以从哪些方面做创新点,文本生 ...
- [贪心,dp] 2019中国大学生程序设计竞赛(CCPC) - 网络选拔赛 Fishing Master (Problem - 6709)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=6709 Fishing Master Time Limit: 2000/1000 MS (Java/Othe ...
- WeChat 搭建过程
[被动回复消息] 1.创建项目(基于MyEclipse + Tomcat 7 编写):wechat 2.导入jar包(用于解析xml):dom4j-1.6.1.jar,xstream-1.3.jar ...
- 多伦多大学&NVIDIA最新成果:图像标注速度提升10倍!
图像标注速度提升10倍! 这是多伦多大学与英伟达联合公布的一项最新研究:Curve-GCN的应用结果. Curve-GCN是一种高效交互式图像标注方法,其性能优于Polygon-RNN++.在自动模式 ...
- 深度学习论文TOP10,2019一季度研究进展大盘点
9012年已经悄悄过去了1/3. 过去的100多天里,在深度学习领域,每天都有大量的新论文产生.所以深度学习研究在2019年开了怎样一个头呢? Open Data Science对第一季度的深度学习研 ...
- WePY的开发环境的安装
2020-03-24 1.安装Node.js 官网:https://nodejs.org/ 两个版本 LTS为稳定的长期支持版本 Current为最新的版本 安装完毕后,cmd下输入 node -v ...
- 数塔(杭电oj2084)
Problem Description 在讲述DP算法的时候,一个经典的例子就是数塔问题,它是这样描述的: 有如下所示的数塔,要求从顶层走到底层,若每一步只能走到相邻的结点,则经过的结点的数字之和最大 ...
- mybatis诡异的bug
在使用mybatis中使用 foreach 时,出现了一个诡异的bug java文件中是 List<ImportTaskInfoEntity> selectByCalcBatchIds(@ ...
- 条件判断IF
bash中条件判断使用if语句 千万注意分号 一.单分支条件判断 if 条件 :then 分支1: fi 二.双分支条件判断 if 条件:then 分支1: else 分支2: fi 三.多分支条 ...