P1079 延迟的回文数

转跳点:

1079 延迟的回文数 (20分)

给定一个 k+1 位的正整数 N,写成 ak​​⋯a​1​​a​0​​ 的形式,其中对所有 i 有 0≤ai​​<10 且 ak​​>0。N 被称为一个回文数,当且仅当对所有 i 有 ai​​=aki​​。零也被定义为一个回文数。

非回文数也可以通过一系列操作变出回文数。首先将该数字逆转,再将逆转数与该数相加,如果和还不是一个回文数,就重复这个逆转再相加的操作,直到一个回文数出现。如果一个非回文数可以变出回文数,就称这个数为延迟的回文数。(定义翻译自 https://en.wikipedia.org/wiki/Palindromic_number )

给定任意一个正整数,本题要求你找到其变出的那个回文数。

输入格式:

输入在一行中给出一个不超过1000位的正整数。

输出格式:

对给定的整数,一行一行输出其变出回文数的过程。每行格式如下

A + B = C

其中 A 是原始的数字,B 是 A 的逆转数,C 是它们的和。A 从输入的整数开始。重复操作直到 C 在 10 步以内变成回文数,这时在一行中输出 C is a palindromic number.;或者如果 10 步都没能得到回文数,最后就在一行中输出 Not found in 10 iterations.

输入样例 1:

97152

输出样例 1:

97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.

输入样例 2:

196

输出样例 2:

196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.

这道题居然不用去除前导0,害得我写了好久没过去,瞎了我狗眼

整体思路就是,循环:

  • 把numA反转,得到numB,不用去0
  • 相加A和B,得到C,记得进位处理
  • 判断C是否是回文数

所以一共3个函数,顺便说一下,进位处理的时候记得加’\0’,要么就一开始直接初始化。

#include <stdio.h>
#include <stdlib.h>
#include <string.h> int isPalind(char num[]);
void Add(char A[], char B[]);
void Reverse(char A[], char B[]); int main(void)
{
int i = 0;
char numA[1100] = "\0", numB[1100] = "\0"; scanf("%s", numA); while (i < 10 && 0 == isPalind(numA))
{
Reverse(numA, numB);
printf("%s + %s = ", numA, numB);
Add(numA, numB);
printf("%s\n", numA);
i++;
} if (10 == i)
{
printf("Not found in 10 iterations.");
}
else
{
printf("%s is a palindromic number.", numA);
} return 0;
} int isPalind(char num[])
{
int len = strlen(num);
for (size_t i = 0; i < len / 2; i++)
{
if (num[i] != num[len - i - 1])
{
return 0;
}
}
return 1;
} void Add(char A[], char B[])
{
int lenA = strlen(A);
int sum, carry = 0;
for (int i = lenA - 1; i >= 0; i--)
{
sum = (A[i] - '0') + (B[i] - '0') + carry;
A[i] = sum % 10 + '0';
carry = (sum / 10);
}
//最高位存在进位
if (carry)
{
memmove(A + 1, A, lenA + 1);
A[0] = carry + '0';
}
} void Reverse(char A[], char B[])
{
int len = strlen(A);
for (int i = 0; i < len; i++)
{
B[len - i - 1] = A[i];
}
}

PTA不易,诸君共勉!

P1079 延迟的回文数的更多相关文章

  1. PAT 乙级 1079 延迟的回文数(20 分)

    1079 延迟的回文数(20 分) 给定一个 k+1 位的正整数 N,写成 a​k​​⋯a​1​​a​0​​ 的形式,其中对所有 i 有 0≤a​i​​<10 且 a​k​​>0.N 被称 ...

  2. PAT 1079 延迟的回文数(代码+思路)

    1079 延迟的回文数(20 分) 给定一个 k+1 位的正整数 N,写成 a​k​​⋯a​1​​a​0​​ 的形式,其中对所有 i 有 0≤a​i​​<10 且 a​k​​>0.N 被称 ...

  3. PAT 1079. 延迟的回文数

    PAT 1079. 延迟的回文数 给定一个 k+1 位的正整数 N,写成 ak...a1a0 的形式,其中对所有 i 有 0 <= ai < 10 且 ak > 0.N 被称为一个回 ...

  4. PAT(B) 1079 延迟的回文数(Java)

    题目链接:1079 延迟的回文数 (20 point(s)) 题目描述 给定一个 k+1 位的正整数 N,写成 a​k​​⋯a​1​​a​0​​ 的形式,其中对所有 i 有 0≤a​i​​<10 ...

  5. PAT Baisc 1079 延迟的回文数 (20 分)

    给定一个 k+1 位的正整数 N,写成 a​k​​⋯a​1​​a​0​​ 的形式,其中对所有 i 有 0 且 a​k​​>0.N 被称为一个回文数,当且仅当对所有 i 有 a​i​​=a​k−i ...

  6. 【PAT】B1079 延迟的回文数(20 分)

    用了柳婼大佬博客的思路,但实现有不同 没有用string所以要考虑字符串末尾的'\0' 用的stl中的reverse逆置字符串 #include<stdio.h> #include< ...

  7. hdu1282回文数猜想

    Problem Description 一个正整数,如果从左向右读(称之为正序数)和从右向左读(称之为倒序数)是一样的,这样的数就叫回文数.任取一个正整数,如果不是回文数,将该数与他的倒序数相加,若其 ...

  8. C语言 · 特殊回文数

    问题描述 123321是一个非常特殊的数,它从左边读和从右边读是一样的. 输入一个正整数n, 编程求所有这样的五位和六位十进制数,满足各位数字之和等于n . 输入格式 输入一行,包含一个正整数n. 输 ...

  9. Java判断回文数算法简单实现

    好久没写java的代码了, 今天闲来无事写段java的代码,算是为新的一年磨磨刀,开个头,算法是Java判断回文数算法简单实现,基本思想是利用字符串对应位置比较,如果所有可能位置都满足要求,则输入的是 ...

随机推荐

  1. 使用 OClint 进行静态代码分析

    OCLint 就是一个建立在 Clang 上的工具,能够发现代码中潜在的问题. 最近需要一个静态分析代码工具,帮助我们发布运行应用前找到代码潜在的问题. 其实对于iOS开发,我们的日常开发上已经用到了 ...

  2. Windows Server 2008 R2文件服务器升级到Windows Server 2016

    Windows Server 2008 R2文件服务器升级到Windows Server 2016 用户单位有2台Windows Server 2008 R2的文件服务器,已经加入到域.域服务器另有两 ...

  3. 新手如何配置 Chromedriver 环境变量

    有一个不错的链接:https://blog.csdn.net/qq_41429288/article/details/80472064

  4. python笔记心得

    1.字典的映射 day=10# def get_sunday():# return 'Sunday'# def get_monday():# return 'monday'# def get_tues ...

  5. Session共享解决方案

    使用nginx做的负载均衡添加一个ip_hash配置 一.开两个Tomcat写测试程序 @WebServlet("/nginxSessionServlet") public cla ...

  6. IELTS Writing Task 1: two-chart answer

    Thursday, January 09, 2020 The chart below shows the value of one country's exports in various categ ...

  7. Android SDCard文件、目录操作【转】

    一.权限问题 参考:http://www.cnblogs.com/sky-zhang/p/3403393.html Android框架是基于Linux内核构建,所以Android安全系统也是基于Lin ...

  8. 敏捷团队协作:Confluence简易教程

      0.Confluence简介 Confluence是一个企业级的Wiki软件,可用于在企业.部门.团队内部进行信息共享和协同编辑. 1.基础概念 Confluence的使用并不复杂,只需掌握如下几 ...

  9. Day1-B-CF-1144B

    简述:有一个n个元素的序列,选奇数下一个就选偶数,偶数则下一个就是奇数,问能否取完,能取完输出0,否则输出能剩下的最小的之和 思路:统计奇偶数个数,若相等或相差一则取完,否则排列后取出最小的前x个(x ...

  10. Spring Schedule 实现定时任务

    很多时候我们都需要为系统建立一个定时任务来帮我们做一些事情,SpringBoot 已经帮我们实现好了一个,我们只需要直接使用即可,当然你也可以不用 SpringBoot 自带的定时任务,整合 Quar ...