P1079 延迟的回文数
P1079 延迟的回文数
转跳点:
1079 延迟的回文数 (20分)
给定一个 k+1 位的正整数 N,写成 ak⋯a1a0 的形式,其中对所有 i 有 0≤ai<10 且 ak>0。N 被称为一个回文数,当且仅当对所有 i 有 ai=ak−i。零也被定义为一个回文数。
非回文数也可以通过一系列操作变出回文数。首先将该数字逆转,再将逆转数与该数相加,如果和还不是一个回文数,就重复这个逆转再相加的操作,直到一个回文数出现。如果一个非回文数可以变出回文数,就称这个数为延迟的回文数。(定义翻译自 https://en.wikipedia.org/wiki/Palindromic_number )
给定任意一个正整数,本题要求你找到其变出的那个回文数。
输入格式:
输入在一行中给出一个不超过1000位的正整数。
输出格式:
对给定的整数,一行一行输出其变出回文数的过程。每行格式如下
A + B = C
其中 A 是原始的数字,B 是 A 的逆转数,C 是它们的和。A 从输入的整数开始。重复操作直到 C 在 10 步以内变成回文数,这时在一行中输出 C is a palindromic number.;或者如果 10 步都没能得到回文数,最后就在一行中输出 Not found in 10 iterations.。
输入样例 1:
97152
输出样例 1:
97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.
输入样例 2:
196
输出样例 2:
196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.
这道题居然不用去除前导0,害得我写了好久没过去,瞎了我狗眼
整体思路就是,循环:
- 把numA反转,得到numB,不用去0
- 相加A和B,得到C,记得进位处理
- 判断C是否是回文数
所以一共3个函数,顺便说一下,进位处理的时候记得加’\0’,要么就一开始直接初始化。
#include <stdio.h>
#include <stdlib.h>
#include <string.h> int isPalind(char num[]);
void Add(char A[], char B[]);
void Reverse(char A[], char B[]); int main(void)
{
int i = 0;
char numA[1100] = "\0", numB[1100] = "\0"; scanf("%s", numA); while (i < 10 && 0 == isPalind(numA))
{
Reverse(numA, numB);
printf("%s + %s = ", numA, numB);
Add(numA, numB);
printf("%s\n", numA);
i++;
} if (10 == i)
{
printf("Not found in 10 iterations.");
}
else
{
printf("%s is a palindromic number.", numA);
} return 0;
} int isPalind(char num[])
{
int len = strlen(num);
for (size_t i = 0; i < len / 2; i++)
{
if (num[i] != num[len - i - 1])
{
return 0;
}
}
return 1;
} void Add(char A[], char B[])
{
int lenA = strlen(A);
int sum, carry = 0;
for (int i = lenA - 1; i >= 0; i--)
{
sum = (A[i] - '0') + (B[i] - '0') + carry;
A[i] = sum % 10 + '0';
carry = (sum / 10);
}
//最高位存在进位
if (carry)
{
memmove(A + 1, A, lenA + 1);
A[0] = carry + '0';
}
} void Reverse(char A[], char B[])
{
int len = strlen(A);
for (int i = 0; i < len; i++)
{
B[len - i - 1] = A[i];
}
}
PTA不易,诸君共勉!
P1079 延迟的回文数的更多相关文章
- PAT 乙级 1079 延迟的回文数(20 分)
1079 延迟的回文数(20 分) 给定一个 k+1 位的正整数 N,写成 ak⋯a1a0 的形式,其中对所有 i 有 0≤ai<10 且 ak>0.N 被称 ...
- PAT 1079 延迟的回文数(代码+思路)
1079 延迟的回文数(20 分) 给定一个 k+1 位的正整数 N,写成 ak⋯a1a0 的形式,其中对所有 i 有 0≤ai<10 且 ak>0.N 被称 ...
- PAT 1079. 延迟的回文数
PAT 1079. 延迟的回文数 给定一个 k+1 位的正整数 N,写成 ak...a1a0 的形式,其中对所有 i 有 0 <= ai < 10 且 ak > 0.N 被称为一个回 ...
- PAT(B) 1079 延迟的回文数(Java)
题目链接:1079 延迟的回文数 (20 point(s)) 题目描述 给定一个 k+1 位的正整数 N,写成 ak⋯a1a0 的形式,其中对所有 i 有 0≤ai<10 ...
- PAT Baisc 1079 延迟的回文数 (20 分)
给定一个 k+1 位的正整数 N,写成 ak⋯a1a0 的形式,其中对所有 i 有 0 且 ak>0.N 被称为一个回文数,当且仅当对所有 i 有 ai=ak−i ...
- 【PAT】B1079 延迟的回文数(20 分)
用了柳婼大佬博客的思路,但实现有不同 没有用string所以要考虑字符串末尾的'\0' 用的stl中的reverse逆置字符串 #include<stdio.h> #include< ...
- hdu1282回文数猜想
Problem Description 一个正整数,如果从左向右读(称之为正序数)和从右向左读(称之为倒序数)是一样的,这样的数就叫回文数.任取一个正整数,如果不是回文数,将该数与他的倒序数相加,若其 ...
- C语言 · 特殊回文数
问题描述 123321是一个非常特殊的数,它从左边读和从右边读是一样的. 输入一个正整数n, 编程求所有这样的五位和六位十进制数,满足各位数字之和等于n . 输入格式 输入一行,包含一个正整数n. 输 ...
- Java判断回文数算法简单实现
好久没写java的代码了, 今天闲来无事写段java的代码,算是为新的一年磨磨刀,开个头,算法是Java判断回文数算法简单实现,基本思想是利用字符串对应位置比较,如果所有可能位置都满足要求,则输入的是 ...
随机推荐
- 使用 OClint 进行静态代码分析
OCLint 就是一个建立在 Clang 上的工具,能够发现代码中潜在的问题. 最近需要一个静态分析代码工具,帮助我们发布运行应用前找到代码潜在的问题. 其实对于iOS开发,我们的日常开发上已经用到了 ...
- Windows Server 2008 R2文件服务器升级到Windows Server 2016
Windows Server 2008 R2文件服务器升级到Windows Server 2016 用户单位有2台Windows Server 2008 R2的文件服务器,已经加入到域.域服务器另有两 ...
- 新手如何配置 Chromedriver 环境变量
有一个不错的链接:https://blog.csdn.net/qq_41429288/article/details/80472064
- python笔记心得
1.字典的映射 day=10# def get_sunday():# return 'Sunday'# def get_monday():# return 'monday'# def get_tues ...
- Session共享解决方案
使用nginx做的负载均衡添加一个ip_hash配置 一.开两个Tomcat写测试程序 @WebServlet("/nginxSessionServlet") public cla ...
- IELTS Writing Task 1: two-chart answer
Thursday, January 09, 2020 The chart below shows the value of one country's exports in various categ ...
- Android SDCard文件、目录操作【转】
一.权限问题 参考:http://www.cnblogs.com/sky-zhang/p/3403393.html Android框架是基于Linux内核构建,所以Android安全系统也是基于Lin ...
- 敏捷团队协作:Confluence简易教程
0.Confluence简介 Confluence是一个企业级的Wiki软件,可用于在企业.部门.团队内部进行信息共享和协同编辑. 1.基础概念 Confluence的使用并不复杂,只需掌握如下几 ...
- Day1-B-CF-1144B
简述:有一个n个元素的序列,选奇数下一个就选偶数,偶数则下一个就是奇数,问能否取完,能取完输出0,否则输出能剩下的最小的之和 思路:统计奇偶数个数,若相等或相差一则取完,否则排列后取出最小的前x个(x ...
- Spring Schedule 实现定时任务
很多时候我们都需要为系统建立一个定时任务来帮我们做一些事情,SpringBoot 已经帮我们实现好了一个,我们只需要直接使用即可,当然你也可以不用 SpringBoot 自带的定时任务,整合 Quar ...