P1079 延迟的回文数
P1079 延迟的回文数
转跳点:
1079 延迟的回文数 (20分)
给定一个 k+1 位的正整数 N,写成 ak⋯a1a0 的形式,其中对所有 i 有 0≤ai<10 且 ak>0。N 被称为一个回文数,当且仅当对所有 i 有 ai=ak−i。零也被定义为一个回文数。
非回文数也可以通过一系列操作变出回文数。首先将该数字逆转,再将逆转数与该数相加,如果和还不是一个回文数,就重复这个逆转再相加的操作,直到一个回文数出现。如果一个非回文数可以变出回文数,就称这个数为延迟的回文数。(定义翻译自 https://en.wikipedia.org/wiki/Palindromic_number )
给定任意一个正整数,本题要求你找到其变出的那个回文数。
输入格式:
输入在一行中给出一个不超过1000位的正整数。
输出格式:
对给定的整数,一行一行输出其变出回文数的过程。每行格式如下
A + B = C
其中 A 是原始的数字,B 是 A 的逆转数,C 是它们的和。A 从输入的整数开始。重复操作直到 C 在 10 步以内变成回文数,这时在一行中输出 C is a palindromic number.;或者如果 10 步都没能得到回文数,最后就在一行中输出 Not found in 10 iterations.。
输入样例 1:
97152
输出样例 1:
97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.
输入样例 2:
196
输出样例 2:
196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.
这道题居然不用去除前导0,害得我写了好久没过去,瞎了我狗眼
整体思路就是,循环:
- 把numA反转,得到numB,不用去0
- 相加A和B,得到C,记得进位处理
- 判断C是否是回文数
所以一共3个函数,顺便说一下,进位处理的时候记得加’\0’,要么就一开始直接初始化。
#include <stdio.h>
#include <stdlib.h>
#include <string.h> int isPalind(char num[]);
void Add(char A[], char B[]);
void Reverse(char A[], char B[]); int main(void)
{
int i = 0;
char numA[1100] = "\0", numB[1100] = "\0"; scanf("%s", numA); while (i < 10 && 0 == isPalind(numA))
{
Reverse(numA, numB);
printf("%s + %s = ", numA, numB);
Add(numA, numB);
printf("%s\n", numA);
i++;
} if (10 == i)
{
printf("Not found in 10 iterations.");
}
else
{
printf("%s is a palindromic number.", numA);
} return 0;
} int isPalind(char num[])
{
int len = strlen(num);
for (size_t i = 0; i < len / 2; i++)
{
if (num[i] != num[len - i - 1])
{
return 0;
}
}
return 1;
} void Add(char A[], char B[])
{
int lenA = strlen(A);
int sum, carry = 0;
for (int i = lenA - 1; i >= 0; i--)
{
sum = (A[i] - '0') + (B[i] - '0') + carry;
A[i] = sum % 10 + '0';
carry = (sum / 10);
}
//最高位存在进位
if (carry)
{
memmove(A + 1, A, lenA + 1);
A[0] = carry + '0';
}
} void Reverse(char A[], char B[])
{
int len = strlen(A);
for (int i = 0; i < len; i++)
{
B[len - i - 1] = A[i];
}
}
PTA不易,诸君共勉!
P1079 延迟的回文数的更多相关文章
- PAT 乙级 1079 延迟的回文数(20 分)
1079 延迟的回文数(20 分) 给定一个 k+1 位的正整数 N,写成 ak⋯a1a0 的形式,其中对所有 i 有 0≤ai<10 且 ak>0.N 被称 ...
- PAT 1079 延迟的回文数(代码+思路)
1079 延迟的回文数(20 分) 给定一个 k+1 位的正整数 N,写成 ak⋯a1a0 的形式,其中对所有 i 有 0≤ai<10 且 ak>0.N 被称 ...
- PAT 1079. 延迟的回文数
PAT 1079. 延迟的回文数 给定一个 k+1 位的正整数 N,写成 ak...a1a0 的形式,其中对所有 i 有 0 <= ai < 10 且 ak > 0.N 被称为一个回 ...
- PAT(B) 1079 延迟的回文数(Java)
题目链接:1079 延迟的回文数 (20 point(s)) 题目描述 给定一个 k+1 位的正整数 N,写成 ak⋯a1a0 的形式,其中对所有 i 有 0≤ai<10 ...
- PAT Baisc 1079 延迟的回文数 (20 分)
给定一个 k+1 位的正整数 N,写成 ak⋯a1a0 的形式,其中对所有 i 有 0 且 ak>0.N 被称为一个回文数,当且仅当对所有 i 有 ai=ak−i ...
- 【PAT】B1079 延迟的回文数(20 分)
用了柳婼大佬博客的思路,但实现有不同 没有用string所以要考虑字符串末尾的'\0' 用的stl中的reverse逆置字符串 #include<stdio.h> #include< ...
- hdu1282回文数猜想
Problem Description 一个正整数,如果从左向右读(称之为正序数)和从右向左读(称之为倒序数)是一样的,这样的数就叫回文数.任取一个正整数,如果不是回文数,将该数与他的倒序数相加,若其 ...
- C语言 · 特殊回文数
问题描述 123321是一个非常特殊的数,它从左边读和从右边读是一样的. 输入一个正整数n, 编程求所有这样的五位和六位十进制数,满足各位数字之和等于n . 输入格式 输入一行,包含一个正整数n. 输 ...
- Java判断回文数算法简单实现
好久没写java的代码了, 今天闲来无事写段java的代码,算是为新的一年磨磨刀,开个头,算法是Java判断回文数算法简单实现,基本思想是利用字符串对应位置比较,如果所有可能位置都满足要求,则输入的是 ...
随机推荐
- 基础总结篇之八:创建及调用自己的ContentProvider
转自:http://blog.csdn.net/wellsoho/article/details/49494141 若不能坚持到底,即使是朽木也不能折断:只要坚持不停地用刀刻,就算是金属玉石也可以雕出 ...
- Interesting丨当我们用蚂蚁的视角看待世界
分享一组很有意思的图片~
- JavaScript - String对象,字符串,String包装类型
1. 字符串 1.1 字符串的不可变性 var str = 'abc'; str = 'hello'; // 当重新给str赋值的时候,常量'abc'不会被修改,依然在内存中 // 重新给字符串赋值, ...
- day5-1继承
继承: Constructor属性和prototype属性的关系: 创建了自定义的构造函数之后,其原型对象默认会取得constructor属性:当调用构造函数创建一个新实例后,该实例的内部将包含一个指 ...
- C# Stream篇(三) -- TextWriter 和 StreamWriter---转载
C# Stream篇(三) -- TextWriter 和 StreamWriter TextWriter 和 StreamWriter 目录: 为何介绍TextWriter? TextWriter的 ...
- HDU 5564:Clarke and digits 收获颇多的矩阵快速幂 + 前缀和
Clarke and digits Accepts: 16 Submissions: 29 Time Limit: 5000/3000 MS (Java/Others) Memory Limi ...
- 三种方式安装mariadb-10.3.18
安装环境:CentOS Linux release 7.5.1804 (Core) 一.yum安装 官方网站yum配置方法链接:https://mariadb.com/kb/en/library/yu ...
- C++11常用特性介绍——nullptr关键字及用法
一.nullptr关键字及用法 1)NULL的二义性 void func(int) {} void func(int*) {} 当函数调用func(NULL)时会执行哪个函数呢? 先看C++对NULL ...
- A easy and simple way to establish Oracle ADG
Yes, thanks to Then, I can give simple and reasy way to make it. Suppose hosts and IPs like that: 15 ...
- Python 基础之字符串操作,函数及格式化format
一.字符串的相关操作 1.字符串的拼接 + strvar1 = "我爱你,"strvar2 = "亲爱的姑凉"res = strvar1 + strvar2pr ...