原题链接

本人看了其它解法,发现本人的解法还是 首创

而且我的解法好像和 \(\times 6\) 没什么关系 ……

(如果没 \(\times 6\),我没还不用算逆元)

别人的思路呢,大都是从 \(\times 6\) 想到三个数的全排列,然后交换顺序枚举。

下面看我的方法。

先抛开 \(\times 6\).

\[\sum_{i=1}^n \sum_{j=i+1}^n \sum_{k=j+1}^n a_i \times a_j \times a_k
\]

\[= \sum_{j=1}^n a_j \times (\sum_{i=1}^{j-1} a_i \times \sum_{k=j+1}^n a_k)
\]

你可能不太明白?但是,今天的推式子很短,你必须步步理解。

实际上,这步是考虑中间数被计算的次数。对它前面的所有数之和和后面数之和,它都会被计算。

根据 乘法原理 ,就可以得到。

我们想到了前缀和:

\[s_i = \sum_{j=1}^i a_j
\]

那么,显然:

\[= \sum_{j=1}^n a_j \times s_{j-1} \times (s_n - s_j)
\]

直接枚举解决问题。

时间复杂度: \(O(n)\).

实际得分:\(100pts\).

#include<bits/stdc++.h>
using namespace std; typedef long long ll; inline ll read(){char ch=getchar();int f=1; while(!isdigit(ch)) {if(ch=='-')f=-f; ch=getchar();}
ll x=0;while(isdigit(ch)) x=(x<<3)+(x<<1)+ch-'0',ch=getchar(); return x*f;} const ll N=1e6+1;
const int MOD=1e9+7; int n; ll a[N];
ll f[N],s[N];
//f[i]=a[i]*(s[n]-s[i]) inline ll solve(ll x) {
return (x<0)?(x+MOD):x;
} int main(){
n=read();
for(int i=1;i<=n;i++) a[i]=read(),s[i]=(s[i-1]+a[i])%MOD;
for(int i=1;i<=n;i++) f[i]=((a[i]*solve(s[n]-s[i])%MOD)*(s[i-1]))%MOD;
ll ans=0;
for(int i=1;i<=n;i++) ans=(ans+f[i])%MOD;
// for(int i=1;i<=n;i++) printf("%d %lld\n",i,f[i]);
printf("%lld\n",(ans*6)%MOD);
return 0;
}

洛谷 P3909 异或之积 题解的更多相关文章

  1. 洛谷——P3909 异或之积

    P3909 异或之积 题目描述 对于A_1,A_2,A_3,\cdots,A_NA1​,A2​,A3​,⋯,AN​,求 (6\times \sum_{i=1}^N\sum_{j=i+1}^N\sum_ ...

  2. 洛谷P1854 花店橱窗布置 分析+题解代码

    洛谷P1854 花店橱窗布置 分析+题解代码 蒟蒻的第一道提高+/省选-,纪念一下. 题目描述: 某花店现有F束花,每一束花的品种都不一样,同时至少有同样数量的花瓶,被按顺序摆成一行,花瓶的位置是固定 ...

  3. P3909 异或之积

    P3909 异或之积 为什么叫做异或之积? 答曰:只要不关乎Alice和Bob就行 做完这道水题,感觉自己弱爆了. 一开始就要考虑暴力\(O(n^3)\)的优化. 然后就注意到了题目中的\(6\)为什 ...

  4. 洛谷 P3908 异或之和

    洛谷 P3908 异或之和 题目描述 求1⨁2⨁⋯⨁N 的值. A⨁B 即 AA, B 按位异或. 输入输出格式 输入格式: 1 个整数 N . 输出格式: 1 个整数,表示所求的值. 输入输出样例 ...

  5. HAOI2006 (洛谷P2341)受欢迎的牛 题解

    HAOI2006 (洛谷P2341)受欢迎的牛 题解 题目描述 友情链接原题 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之 ...

  6. 洛谷P3412 仓鼠找$Sugar\ II$题解(期望+统计论?)

    洛谷P3412 仓鼠找\(Sugar\ II\)题解(期望+统计论?) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327573 原题链接:洛谷P3412 ...

  7. 洛谷P3502 [POI2010]CHO-Hamsters感想及题解(图论+字符串+矩阵加速$dp\&Floyd$)

    洛谷P3502 [POI2010]CHO-Hamsters感想及题解(图论+字符串+矩阵加速\(dp\&Floyd\)) 标签:题解 阅读体验:https://zybuluo.com/Junl ...

  8. BZOJ4946 & 洛谷3826 & UOJ318:[NOI2017]蔬菜——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4946 https://www.luogu.org/problemnew/show/P3826 ht ...

  9. 洛谷1578:[WC2002]奶牛浴场——题解

    https://www.luogu.org/problemnew/show/P1578#sub 由于John建造了牛场围栏,激起了奶牛的愤怒,奶牛的产奶量急剧减少.为了讨好奶牛,John决定在牛场中建 ...

随机推荐

  1. [转]win7 64位下完美安装64位oracle 11g

    最近在网上搜如何在win764位的情况下安装64位的oracle,并且使用PLSQL Developer来管理oracle. 于是开始在oracle官网下载数据库,下载是一件很简单的事情,问题是在百度 ...

  2. 烧钱时代终结!O2O还能玩啥花样?

    最终的最终,饱受亏损.烧钱玩补贴等争议的美团还是追随滴滴/快的.赶集/58的步伐,与大众点评愉快的在一起了!美团和大众点评作为O2O行业的领军企业,都因为不堪忍受持续地投入却不见回报的模式而不得不放低 ...

  3. Html学习笔记(二) 简单标签

    标签的重点 标签的用途 标签在浏览器中的默认样式 <body>标签: 在网页上显示的内容 <p>标签: 添加段落 <hx>标签: 添加标题 标签一共有6个,h1.h ...

  4. 人心和隐私怎么防?“防出轨”APP让道德滑落

    ​ 王尔德曾说过,"一个人应该永远保持一点神秘感".让·保·里克特也表示,:"一个人泄露了秘密,哪怕一丝一毫,就再也得不到安宁了".可见,对于自然人来说,保有自 ...

  5. 关于.net MVC中主视图和分部视图的数据共享遇到的问题

    今天在开发web时因为调用到的分部视图需要有个隐藏域.然后因为当我们第一次调用分部视图时,是用 @Html.Partial("DetailDataPart")在主视图里把它嵌进去主 ...

  6. 批量复制及执行命令shell脚本

    平时在处理一个或几个机器运行环境时,一个机器一个机器处理也能接受,但是如果是一批机器,几十或几百台,要是一台一台去安装环境,光是输入同一的命令,估计你自己都想吐,所有聪明的人会想一些偷懒的办法,确实可 ...

  7. 使用webpack从0搭建多入口网站脚手架,可复用导航栏/底部通栏/侧边栏,根据页面文件自动更改配置,支持ES6/Less

    之前只知道webpack很强大,但是一直没有深入学习过,这次从头看了一下教程,然后从0开始搭建了一个多入口网站的开发脚手架,期间遇到过很多问题,所以有心整理一下,希望能给大家一点帮助. 多HTML网站 ...

  8. HTML与CSS 开发常用语义化命名

    一.布局❤️ header 头部/页眉:index 首页/索引:logo 标志:nav/sub_nav 导航/子导航:banner 横幅广告:main/content 主体/内容:container/ ...

  9. Java基础--数组的定义

    1.数组的定义 数组:一组能够储存相同数据类型值的变量的集合. 2.数组的赋值方式 (1)使用默认的初始值来初始化数组中的每一个元素 语法:数组元素类型[]数组名 = new数组元素类型[数组中元素的 ...

  10. 复盘MySQL分页查询优化方案

    一.前言 MySQL分页查询作为Java面试的一道高频面试题,这里有必要实践一下,毕竟实践出真知. 很多同学在做测试时苦于没有海量数据,官方其实是有一套测试库的. 二.模拟数据 这里模拟数据分2种情况 ...