1.Introduction

最近读论文刚好用到了这个,之前只是有耳闻,没有仔细研究过,这里就好好捋一下,会逐步完善

不过貌似CRT(中国剩余定理)的实现更容易被攻击

2. RSA: Overview

rsa算法描述如下:

  1. 选择两个大素数\(p、q\),计算\(N = p*q\)(最好保证N在2048bit以上,最新的研究工作已经可以成功分解762bit的N)

  2. 计算\(\phi(N)=(p-1)*(q-1)\)

  3. 选择一个\(e\)使得\(gcd(e, \phi(n)) == 1\),e由于是作加密使用,故推荐使用小值,推荐使用3、65537(\(2^{16}+1\)),65537只有两个1bit,所以在幂运算(参加我的另一篇博客:快速指数算法)时只需要两次额外的乘法运算;此外,不需要担心使用固定值会造成的安全问题,RSA的安全性不会受影响

  4. 计算\(ed = 1 (\mod\phi(n))\),得到\(d\)值用于解密

  5. 公钥:(N, e),私钥:(N, d)

  6. 一次RSA加解密:

    \[c = m^e \mod N\\
    m = d^d \mod N\\
    \]

  7. 解释:

    即$ m = (m^e)^d = m^{1\mod\phi(N)}=m^{h*\phi(N)+1}\mod N\(,由欧拉定理\)a^{\phi(n)}=1 \mod n$,得到前式等价于

    \(1^h*m^1 = m\)

3. Using CRT

3.1 中国剩余定理

描述起来比较麻烦,见中国剩余定理,可以把大模数变小模数

3.2 在RSA中使用CRT

RSA中计算耗时最大的地方是解密的\(c^d\)操作,由于d值往往较大,故计算难度较高,可以使用中国剩余定理适当降低计算量。

计算私钥

下面几部分会被预计算并存入私钥:

  • \(p、q\)
  • \(dp = d \mod {p-1}\)
  • \(dq = d \mod {q-1}\)
  • \(q_{inv} = q^{-1} \mod p\)

这样最后的私钥就是\((p,q,d,dp,dq,q_{inv})\)

解密

  • \(m_1 = c^{dp} \mod p\)
  • \(m_2 = c^{dq} \mod q\)
  • \(h = q_{inv}(m_1-m_2)\mod p\)
    • 当\(m_1<m_2\)时,有些实现会这样计算\(h = q_{inv}[(m_1+\lceil{\frac{q}{p}}\rceil p)-m_2]\mod p\)
  • \(m = m_2+hq \mod {p*q}\)

这样做虽然要计算两次模幂,但效率依然要比直接计算高得多。因为不管是指数还是模数都要小得多

4. 列几个常见的算法库

5 Reference

RSA遇上中国剩余定理的更多相关文章

  1. (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)

    前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...

  2. 洛谷P2480 [SDOI2010]古代猪文(费马小定理,卢卡斯定理,中国剩余定理,线性筛)

    洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d| ...

  3. gcd,扩展欧几里得,中国剩余定理

    1.gcd: int gcd(int a,int b){ ?a:gcd(b,a%b); } 2.中国剩余定理: 题目:学生A依次给n个整数a[],学生B相应给n个正整数m[]且两两互素,老师提出问题: ...

  4. 【bzoj3782】上学路线 dp+容斥原理+Lucas定理+中国剩余定理

    题目描述 小C所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M).小C家住在西南角,学校在东北角.现在有T个路口进行施工,小C不能通过这些路口.小C喜欢走最短的路径到达目的 ...

  5. NOI 2018 屠龙勇士 (拓展中国剩余定理excrt+拓展欧几里得exgcd)

    题目大意:略 真是一波三折的一道国赛题,先学了中国剩余定理,勉强看懂了模板然后写的这道题 把取出的宝剑攻击力设为T,可得Ti*x=ai(mod pi),这显然是ax=c(mod b)的形式 这部分用e ...

  6. POJ 1006:Biorhythms 中国剩余定理

    Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 121194   Accepted: 38157 Des ...

  7. 卢卡斯定理&&中国剩余定理

    卢卡斯定理(模数较小,且是质数) 式子C(m,n)=C(m/p,n/p)*C(m%p,n%p)%p 至于证明(我也不会QAQ,只要记住公式也该就好了). 同时卢卡斯定理一般用于组合数取模上 1.首先当 ...

  8. 《孙子算经》之"物不知数"题:中国剩余定理

    1.<孙子算经>之"物不知数"题 今有物不知其数,三三数之剩二,五五数之剩七,七七数之剩二,问物几何? 2.中国剩余定理 定义: 设 a,b,m 都是整数.  如果 m ...

  9. POJ 1006 中国剩余定理

    #include <cstdio> int main() { // freopen("in.txt","r",stdin); ; while(sca ...

随机推荐

  1. java实现第六届蓝桥杯表格计算

    表格计算 某次无聊中, atm 发现了一个很老的程序.这个程序的功能类似于 Excel ,它对一个表格进行操作. 不妨设表格有 n 行,每行有 m 个格子. 每个格子的内容可以是一个正整数,也可以是一 ...

  2. java实现第六届蓝桥杯密文搜索

    密文搜索 福尔摩斯从X星收到一份资料,全部是小写字母组成. 他的助手提供了另一份资料:许多长度为8的密码列表. 福尔摩斯发现,这些密码是被打乱后隐藏在先前那份资料中的. 请你编写一个程序,从第一份资料 ...

  3. Java实现第八届蓝桥杯包子凑数

    包子凑数 题目描述 小明几乎每天早晨都会在一家包子铺吃早餐.他发现这家包子铺有N种蒸笼,其中第i种蒸笼恰好能放Ai个包子.每种蒸笼都有非常多笼,可以认为是无限笼. 每当有顾客想买X个包子,卖包子的大叔 ...

  4. Linux文件处理命令 ls 详解

    Linux系统的应用场景最多的就是用作服务器的系统了,简洁,安全,高效,一般我们服务器端不会安装Linux的图形化界面,虽然现在一些Linux发行版的图形界面也很漂亮,但是,服务器最主要的是高效.所以 ...

  5. PAT 换个格式输出整数

    让我们用字母 B 来表示“百”.字母 S 表示“十”,用 12...n 来表示不为零的个位数字 n,换个格式来输出任一个不超过 3 位的正整数.例如 234 应该被输出为BBSSS1234,因为它有 ...

  6. PAT 反转链表

    给定一个常数 K 以及一个单链表 L,请编写程序将 L 中每 K 个结点反转.例如:给定 L 为 1→2→3→4→5→6,K 为 3,则输出应该为 3→2→1→6→5→4:如果 K 为 4,则输出应该 ...

  7. 处理npm安装模块报错01

    报错:Error: EACCES: permission denied, mkdir '/usr/local/lib/node_modules/nodemon_tmp' 解决:sudo cnpm in ...

  8. 使用JFreeChart生成条形图

    1. 准备工作 下载JFreeChart,我使用的版本为1.0.19,相关内容参见JFreeChart,下载链接为https://sourceforge.net/projects/jfreechart ...

  9. 多应用下 Swagger 的使用,这可能是最好的方式!

    问题 微服务化的时代,我们整个项目工程下面都会有很多的子系统,对于每个应用都有暴露 Api 接口文档需要,这个时候我们就会想到 Swagger 这个优秀 jar 包.但是我们会遇到这样的问题,假如说我 ...

  10. postman切换环境

    原文链接:https://www.cnblogs.com/nicole-zhang/p/11498384.html 通常会有多个测试环境,针对同一个接口来说,可能只是域名有变化,此时可以添加postm ...