高阶函数

1、什么是高阶函数

  • 在Python中,变量可以指向函数

  • 函数名也是变量

  • 既然变量可以指向函数,函数的参数能接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数就称之为高阶函数。  

map()高阶函数

map(function, iterable, ...)

 功能

  • 将第一个参数 function 依次作用在参数可迭代对象中的每一个元素上,返回包含每次 function 函数返回值的新迭代器

 参数

  • function -- 函数,有两个参数
  • iterable  -- 一个或多个可迭代对象(如:序列)

 返回值

  • Python 3.x 返回迭代器
def f(x):
return x*x
r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
print(list(r)) 运行结果:
[1, 4, 9, 16, 25, 36, 49, 64, 81]

reduce()高阶函数

reduce(function, iterable[, initializer])

 功能

  • 函数将一个数据集合(链表,元组等)中的所有数据进行下列操作:用传给 reduce 中的函数 function(有两个参数)先对集合中的第 1、2 个元素进行操作,得到的结果再与第三个数据用 function 函数运算,最后得到一个结果。
  • 其效果类似:reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)

 参数

  • function -- 函数,有两个参数
  • iterable -- 可迭代对象
  • initializer -- 可选,初始参数

 返回值

  • 返回函数计算结果。
from functools import reduce
def add(x, y):
return x + y r = reduce(add, [1, 3, 5, 7, 9])
print(r) 运行结果:
25

filter()函数

filter(function, iterable)

 功能

  • 该接收两个参数,第一个为函数,第二个为序列,序列的每个元素作为参数传递给函数进行判,然后返回 True 或 False,最后将返回 True 的元素放到新迭代器对象中

 参数

  • function -- 判断函数
  • iterable -- 可迭代对象(如:序列)

 返回值

  • 返回一个迭代器对象
def is_odd(n):
return n % 2 == 1 tmplist = filter(is_odd, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
newlist = list(tmplist)
print(newlist) 运行结果:
[1, 3, 5, 7, 9]

sorted()函数

sorted(iterable, key=abs, reverse=False)

 功能

  • 对所有可迭代的对象进行排序操作

 参数

  • iterable -- 可迭代对象。
  • key -- key指定的函数将作用于可迭代对象上的每一个元素,并根据key函数返回的结果进行排序
  • reverse -- 排序规则,reverse = True 降序 , reverse = False 升序(默认)

 返回值

  • 返回重新排列的列表  
print(sorted([36, 5, -12, 9, -21]))
运行结果:[-21, -12, 5, 9, 36] print(sorted([36, 5, -12, 9, -21], key=abs))
#abs(绝对值函数)此处也可使用 ~ 匿名函数
运行结果:[5, 9, -12, -21, 36]

返回函数

高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回。

def lazy_sum(*args):
def sum():
ax = 0
for n in args:
ax = ax + n
return ax
return sum #将定义的函数sum()作为结果值返回 f = lazy_sum(1, 3, 5, 7, 9)
f()

闭包

闭包是“返回函数”的一个典型应用

闭包的定义: 在一个外函数中定义了一个内函数,内函数里运用了外函数的临时变量,并且外函数的返回值是内函数的引用。这样就构成了一个闭包。

#闭包函数的实例
# outer是外部函数 a和b都是外函数的临时变量
def outer( a ):
b = 10
def inner(): # inner是内函数
print(a+b) #在内函数中 用到了外函数的临时变量
return inner # 外函数的返回值是内函数的引用 if __name__ == '__main__':
# 在这里我们调用外函数传入参数5
#此时外函数两个临时变量 a是5 b是10 ,并创建了内函数,然后把内函数的引用返回存给了demo
# 外函数结束的时候发现内部函数将会用到自己的临时变量,这两个临时变量就不会释放,会绑定给这个内部函数
demo = outer(5)
# 我们调用内部函数,看一看内部函数是不是能使用外部函数的临时变量
# demo存了外函数的返回值,也就是inner函数的引用,这里相当于执行inner函数
demo() # demo2 = outer(7)
demo2()#

匿名函数(lambda表达式)

匿名函数的另一个别称是“lambda表达式”

  • lambda表达式的语法: lambda argument_list: expression
  • 这里的argument_list是参数列表。它的结构与Python中函数(function)的参数列表是一样的。
  • 这里的expression是一个关于参数的表达式。表达式中出现的参数需要在argument_list中有定义,并且表达式只能是单行的。
lambda x: x*x
这个lambda表达式实际等同于:
def f(x):
return x*x >>> f = lambda x: x * x
>>> f
<function <lambda> at 0x101c6ef28>
>>> f(5)
25

递归函数

  • 在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。

  • 举个例子,我们来计算阶乘n! = 1 x 2 x 3 x ... x n, 用函数fact(n)表示

  • 可以看出: fact(n) = n! = 1 x 2 x 3 x ... x (n-1) x n = (n-1)! x n = fact(n-1) x n

  • 所以,fact(n)可以表示为n x fact(n-1),只有n=1时需要特殊处理。

  • 于是,fact(n)用递归的方式写出来就是:

def fact(n):
if n==1:
return 1
return n * fact(n - 1)
如果我们计算fact(5),可以根据函数定义看到计算过程如下:

===> fact(5)
===> 5 * fact(4)
===> 5 * (4 * fact(3))
===> 5 * (4 * (3 * fact(2)))
===> 5 * (4 * (3 * (2 * fact(1))))
===> 5 * (4 * (3 * (2 * 1)))
===> 5 * (4 * (3 * 2))
===> 5 * (4 * 6)
===> 5 * 24
===> 120

递归函数的优点和缺点

  • 递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。

  • 缺点是过深的调用会导致栈溢出。

异常处理

1、python各种常见异常

1)  Exception: 所有异常类型
2) AttributeError: 特性引用或赋值失败时引发
3) IOError: 试图打开不存在的文件时引发
4) IndexError: 在使用序列中不存在的索引时引发
5) KeyError: 在使用映射时不存在的键时引发
6) NameError: 在找不到变量名字时引发
7) SyntaxError: 代码有语法错误时引发
8) TypeError: 函数应用于错误类型的对象时引发
9) ValueError: 函数应用于正确类型的对象,但该对象使用不合适的值时引发
10) ZeroDivisionError: 在除操作时第二个参数为0时引发 Python中各种内建异常

2、几种常见捕获异常的方法

 1、捕获单个异常

names = ['alex','jack']
try:
names[2]
except IndexError as e:
print("列表操作错误",e)
# 运行结果: 列表操作错误 list index out of range 捕获单个异常

 2、 多个except子句,捕获多个异常

try:
x = input("Enter the first number:")
y = input("Enter the second number:")
print(x/y)
except ZeroDivisionError:
print("The second number can't zero")
except NameError:
print('That was not a number....') 多个except子句

 3、 一个except捕获多个异常

  说明:如果需要用一个块扑捉多个异常类型,那么可以将他们作为元组列出

try:
x = input("Enter the first number:")
y = input("Enter the second number:")
print(x/y)
except (ZeroDivisionError, TypeError, NameError):
print("your numbers were bogus...") 一个except捕获多个异常

 4、 捕捉对象: except (NameError) as e

try:
x = input("Enter the first number:")
y = input("Enter the second number:")
print(x/y)
except (ZeroDivisionError, TypeError, NameError) as e:
print(e) 捕捉对象: except (NameError) as e
import traceback

try:
name = int('df11')
except Exception as e:
print(traceback.format_exc()) # Traceback (most recent call last):
# File "C:/Users/tom/Desktop/cmdb_cli_ser/AutoClient/test01.py", line 4, in <module>
# name = int('df11')
# ValueError: invalid literal for int() with base 10: 'df11' traceback.format_exc()获取详细异常信息

 5、真正的全捕捉: except

try:
x = input("Enter the first number:")
y = input("Enter the second number:")
print(x/y)
except:
print('something wrong happened') 正真的全捕捉: except

 6、异常使用结构

try:
# 主代码块
pass
except KeyError as e:
# 异常时,执行该块
pass
else:
# 主代码块正常执行完,执行该块
pass
finally:
# 无论异常与否,最终执行该块
pass 异常使用结构

 7、主动触发异常

try:
raise Exception('错误了。。。')
except Exception as e:
print(e)
# 运行结果: 错误了。。。

 8、自定义异常

class WupeiqiException(Exception):
def __init__(self, msg):
self.message = msg
def __str__(self):
return self.message #最终打印的结果就是这里return返回的值 try:
raise WupeiqiException('我的异常') #这里的字符串就会传入到class类的msg中
except WupeiqiException as e:
print(e)
# 运行结果: 我的异常 自定义异常

 9、断言

  作用:Python的assert是用来检查一个条件,如果它为真,就不做任何事。如果它为假,则会抛出AssertError并且包含错误信息

n = 1
assert type(n) is int
print('aaaa')
# 1. Assert后的断言结果成立时才会执行:print('aaaa')
# 2. Assert后的断言结果不成立时会引发AssertError并退出程序

python高阶函数&异常处理的更多相关文章

  1. 用一个简单的例子来理解python高阶函数

    ============================ 用一个简单的例子来理解python高阶函数 ============================ 最近在用mailx发送邮件, 写法大致如 ...

  2. Python高阶函数_map/reduce/filter函数

    本篇将开始介绍python高阶函数map/reduce/filter的用法,更多内容请参考:Python学习指南 map/reduce Python内建了map()和reduce()函数. 如果你读过 ...

  3. Python高阶函数及函数柯里化

    1 Python高阶函数 接收函数为参数,或者把函数作为结果返回的函数为高阶函数. 1.1 自定义sort函数 要求:仿照内建函数sorted,自行实现一个sort函数.内建函数sorted函数是返回 ...

  4. python——高阶函数:高阶函数

    python高阶函数 00初识高阶函数 一等公民 函数在python中是一等公民(First-Class Object),同样和变量一样,函数也是对象,只不过是可调用的对象,所以函数也可以作为一个普通 ...

  5. python高阶函数的使用

    目录 python高阶函数的使用 1.map 2.reduce 3.filter 4.sorted 5.小结 python高阶函数的使用 1.map Python内建了map()函数,map()函数接 ...

  6. python 高阶函数之filter

    前文说到python高阶函数之map,相信大家对python中的高阶函数有所了解,此次继续分享python中的另一个高阶函数filter. 先看一下filter() 函数签名 >>> ...

  7. Python高阶函数

    在Python中,函数名也是一个变量,可以进行赋值  高阶函数是至少满足下列一个条件的函数: 接受一个或多个函数作为输入 输出一个函数 函数名也可以作为函数参数,还可以作为函数返回值 def f(n) ...

  8. Python高阶函数之 - 装饰器

    高阶函数:  1. 函数名可以作为参数传入     2. 函数名可以作为返回值. python装饰器是用于拓展原来函数功能的一种函数 , 这个函数的特殊之处在于它的返回值也是一个函数 , 使用pyth ...

  9. Python高阶函数和匿名函数

    高阶函数:就是把函数当成参数传递的一种函数:例如 注解: 1.调用add函数,分别执行abs(-8)和abs(11),分别计算出他们的值 2.最后在做和运算 map()函数 python内置的一个高阶 ...

随机推荐

  1. Google的kaptcha验证码使用

    效果图: 官方地址:https://code.google.com/p/kaptcha/w/list 1.把下载的kaptcha-2.3.2.jar添加到lib中 2.配置web.xml增加servl ...

  2. php 克隆 clone

    php 克隆 clone 在实际编程过程中,我们常常要遇到这种情况:有一个对象A,在某一时刻A中已经包含了一些有效值,此时可能会需要一个和A完全相同新对象B,并且此后对B任何改动都不会影响到A中的值, ...

  3. Python---14面向对象高级编程(__slots__&@property)

    一.使用__slots__ 正常情况下,当我们定义了一个class,创建了一个class的实例后,我们可以给该实例绑定任何属性和方法,这就是动态语言的灵活性.先定义class: class Stude ...

  4. tips [ 18870 ]

    Created at 2017-08-23 Updated at 2018-01-31 Category 东方大陆 Tag 东方大陆 上面有编辑时间的,别吐槽说什么过期内容了使用 lightPIC图床 ...

  5. 在dataframe添加1行(首行,或者尾部),且不覆盖

    如果直接用下面的代码添加第1行,则会覆盖掉原来的第1行. #指定位置增加一行: df.loc[0]={'a':1,'b':2} 正确方法: 新建一个同样的 dataframe, 然后合并两个dataf ...

  6. C++求解N阶幻方

    由一道数学题的联想然后根据网上的做法瞎jb乱打了一下,居然对了代码精心附上了注释,有兴趣的童鞋可以看一看..不说了,上代码!(自认为结构很清晰易懂) 1234567891011121314151617 ...

  7. 京东Y事业部打造一体化质量管理平台

    互联网企业质量管理的困惑 作为互联网时代的互联网企业,我们的研发模式和传统模式相比,最显著的不同在于发布节奏加快了,这个加快不是快了10%,20%,50%,而是加快了几倍,甚至几十倍,上百倍.面对加快 ...

  8. 混乱中的ICO平台,会不会是下一个P2P的重灾区?

    当众多巨头和创业者还在为共享打车.共享单车.VR.IP化.互联网金融沉迷时,一种全新的"众筹"正在造就一个又一个暴富神话.其名为ICO,即首次代币众筹,一般指区块链初创项目在众筹平 ...

  9. Tian Tian 菾菾 导游 陪同

    自画像系列是梵高的代表作之一,他是一位自学成才的画家,下笔完全自由,主观提取了当时印象派画家学到的技巧,在这幅画中,我们可以看到,颜色在画中的堆叠,色彩与笔在画中表现的形态,都表现出,梵高在他作画中内 ...

  10. 【ThinkPHP6:从TP3升级到放弃】1. 前言及准备工作

    春节期间因为疫情的关系出不去门,所以就研究了一下ThinkPHP的最新版本6.0.2, 自己写了一个博客程序. 现在, 打算写一个ThinkPHP6的专题, 用来把自己在写博客的过程中入过的坑和获得的 ...